. Medical and Hospital News .




TECH SPACE
Altering organic molecules' interaction with light
by Staff Writers
Boston MA (SPX) Aug 08, 2013


Pictured is a representation of an organic molecule (shown as a yellow sphere) suspended on a photonic crystal slab (shown as a grey substrate) supporting macroscopic resonances. Bo Zhen et al. found that when molecules are brought to within 100 nm from the slab surface, they no longer send out light isotropically in all directions, but instead send light of the same wavelengths into specific directions. This dramatic modified emission compared to the molecules' emission without the crystal slab's presence could have important implications for organic light emitting devices and molecular sensing. Credit: Image courtesy of Yan Liang (l2xy2.com) and Bo Zhen.

Enhancing and manipulating the light emission of organic molecules is at heart of many important technological and scientific advances, including in the fields of organic light emitting devices, bio-imaging, bio-molecular detection. Researchers at MIT have now discovered a new platform that enables dramatic manipulation of the emission of organic molecules when simply suspended on top of a carefully designed planar slab with a periodic array of holes: so-called photonic crystal surface.

Influenced by the fast and directional emission channels (called 'resonances') provided by the photonic crystal surface, molecules in the solution that are suspended on top of the surface no longer behave in their usual fashion: instead of sending light isotropically into all directions, they rather send light into specific directions.

The researchers say that this platform could also be applied to enhance other type of interactions of light with matter, such as Raman scattering. Furthermore, this process applies to any other nano-emitters as well, such as quantum dots.

Physics Professors Marin Soljacic and John Joannopoulos, Associate Professor of Applied Mathematics Steven Johnson, Research scientist Dr. Ofer Shapira, Postdocs Dr. Alejandro Rodriguez, Dr. Xiangdong Liang, and graduate students Bo Zhen, Song-Liang Chua, Jeongwon Lee report this discovery as featured in Proceedings of the National Academy of Sciences.

"Most fluorescing molecules are like faint light bulbs uniformly emitting light into all directions," says Soljacic. Researchers have often sought to enhance this emission by incorporating organic emitters into sub-wavelength structured cavities that are usually made out of inorganic materials. However, the challenge lies in an inherent incompatibility in the fabrication of cavities for such hybrid systems.

Zhen et al present a simple and direct methodology to incorporate the organic emitters into their structures. By introducing a microfluidic channel on top of the photonic crystal surface, organic molecules in solution are delivered to the active region where interaction with light is enhanced.

Each molecule then absorbs and emits significantly more energy with an emission pattern that can be designed to be highly directional. "Now we can turn molecules from being simple light bulbs to powerful flashlights that are thousands of times stronger and can all be aligned towards the same direction," says Shapira, the senior author of the paper.

This discovery lends itself to a number of practical applications. "During normal blood tests, for example," adds Shapira, "cells and proteins are labeled with antibodies and fluorescing molecules that allow their recognition and detection. Their detection limit could be significantly improved using such a system due to the enhanced directional emission from the molecules."

The researchers also demonstrated that the directional emission can be turned into organic lasers with low input powers. "This lasing demonstration truly highlights the novelty of this system," says the first author Zhen. For almost any lasing system to work there is a barrier on the input power level, named the lasing threshold, below which lasing will not happen. Naturally, the lower the threshold, the less power it takes to turn on this laser.

Exploring the enhancement mechanisms present in the current platform, lasing was observed with a substantially lower barrier than before: the measured threshold in this new system is at least an order of magnitude lower than any previously reported results using the same molecules.

This work was supported by MIT S3TEC Center, Institute for Soldier Nanotechnologies, Materials Research Science and National Science Foundation, Defense Advanced Research Projects Agency, and Air Force Office of Scientific Research Multidisciplinary Research Program.

.


Related Links
Massachusetts Institute of Technology, Institute for Soldier Nanotechnologies
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





TECH SPACE
Light that Moves and Molds Gels
Pittsburgh PA (SPX) Aug 07, 2013
Some animals-like the octopus and cuttlefish-transform their shape based on environment, fending off attackers or threats in the wild. For decades, researchers have worked toward mimicking similar biological responses in non-living organisms, as it would have significant implications in the medical arena. Now, researchers at the University of Pittsburgh have demonstrated such a biomimetic ... read more


TECH SPACE
Fukushima operator pumps out toxic groundwater

Legacy of 1986 Chernobyl disaster seen in impact on region's forests

Dark tourism brings light to disaster zones

Papua New Guinea opposition challenges asylum deal

TECH SPACE
Satellite tracking of zebra migrations in Africa is conservation aid

'Spoofing' attack test takes over ship's GPS navigation at sea

Orbcomm Globaltrak Completes Shipment Of Fuel Monitoring Solution In Afghanistan

Lockheed Martin GPS III Satellite Prototype To Help Cape Canaveral Air Force Station Prep For Launch

TECH SPACE
Study explores effects of review setting on scientific peer review

Psychological adaptation to urbanization, technology reflected in word usage over last 200 years

Cool heads likely won't prevail in a hotter, wetter world

Study: 'Adam' and 'Eve' lived in same time period

TECH SPACE
Strangers invade the homes of giant bacteria

NASA satellites used to predict zebra migrations

Eavesdropping plants prepare to be attacked

New proto-mammal fossil sheds light on evolution of earliest mammals

TECH SPACE
New case of H7N9 bird flu confirmed in China: officials

Researchers propose new experiments on mutant bird flu

First likely case of H7N9 bird flu spread by humans reported

Brazilian scientists to test AIDS vaccine on monkeys

TECH SPACE
Popular China bloggers should "promote virtues": official

China twin babies stolen by doctor found: state media

Tibetan exile burns himself to death in Nepal

China young adults getting fatter: report

TECH SPACE
Russia home to text message fraud "cottage industry"

Global gangs rake in $870 bn a year: UN official

Mexican generals freed after cartel charges dropped

Mexicans turn to social media to report on drug war

TECH SPACE
China industrial output growth jumps to five-month high

Fall in China loans in July: central bank

Rich economies on growth track, China slows: OECD

China annual inflation steady at 2.7% in July: govt




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement