Medical and Hospital News  
ROBO SPACE
Army researchers develop new algorithms to train robots
by Staff Writers
Aberdeen Proving Ground, MD (SPX) Feb 08, 2018

ARL Researcher Dr. Garrett Warnell, left and University of Texas Austin Professor Dr. Peter Stone, are part of a team that has developed new techniques for robots or computer programs to learn how to perform tasks by interacting with a human instructor. They are presenting findings of the study at the Association for the Advancement of Artificial Intelligence Conference in New Orleans, Louisiana, Feb. 2-7.

Researchers at the U.S. Army Research Laboratory and the University of Texas at Austin have developed new techniques for robots or computer programs to learn how to perform tasks by interacting with a human instructor. The findings of the study will be presented and published at the Association for the Advancement of Artificial Intelligence Conference in New Orleans, Louisiana, Feb. 2-7.

ARL and UT researchers considered a specific case where a human provides real-time feedback in the form of critique. First introduced by collaborator Dr. Peter Stone, a professor at the University of Texas at Austin, along with his former doctoral student, Brad Knox, as TAMER, or Training an Agent Manually via Evaluative Reinforcement, the ARL/UT team developed a new algorithm called Deep TAMER.

It is an extension of TAMER that uses deep learning - a class of machine learning algorithms that are loosely inspired by the brain to provide a robot the ability to learn how to perform tasks by viewing video streams in a short amount of time with a human trainer.

According to Army researcher Dr. Garrett Warnell, the team considered situations where a human teaches an agent how to behave by observing it and providing critique, for example, "good job" or "bad job" -similar to the way a person might train a dog to do a trick. Warnell said the researchers extended earlier work in this field to enable this type of training for robots or computer programs that currently see the world through images, which is an important first step in designing learning agents that can operate in the real world.

Many current techniques in artificial intelligence require robots to interact with their environment for extended periods of time to learn how to optimally perform a task. During this process, the agent might perform actions that may not only be wrong, like a robot running into a wall for example, but catastrophic like a robot running off the side of a cliff. Warnell said help from humans will speed things up for the agents, and help them avoid potential pitfalls.

As a first step, the researchers demonstrated Deep TAMER's success by using it with 15 minutes of human-provided feedback to train an agent to perform better than humans on the Atari game of bowling - a task that has proven difficult for even state-of-the-art methods in artificial intelligence. Deep-TAMER-trained agents exhibited superhuman performance, besting both their amateur trainers and, on average, an expert human Atari player.

Within the next one to two years, researchers are interested in exploring the applicability of their newest technique in a wider variety of environments: for example, video games other than Atari Bowling and additional simulation environments to better represent the types of agents and environments found when fielding robots in the real world.

Their work will be published in the AAAI 2018 conference proceedings.

"The Army of the future will consist of Soldiers and autonomous teammates working side-by-side," Warnell said.

"While both humans and autonomous agents can be trained in advance, the team will inevitably be asked to perform tasks, for example, search and rescue or surveillance, in new environments they have not seen before. In these situations, humans are remarkably good at generalizing their training, but current artificially-intelligent agents are not."

Deep TAMER is the first step in a line of research its researchers envision will enable more successful human-autonomy teams in the Army. Ultimately, they want autonomous agents that can quickly and safely learn from their human teammates in a wide variety of styles such as demonstration, natural language instruction and critique.


Related Links
U.S. Army Research Laboratory
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ROBO SPACE
Bezos hails Alexa as Amazon profits surge
San Francisco (AFP) Feb 1, 2018
Amazon on Thursday reported its profits had more than doubled in the past quarter as company founder Jeff Bezos heaped praise on the performance of its Alexa digital assistant. Net profit more than doubled to $1.9 billion, compared with $749 million a year earlier, for the US online giant which has expanded from retail to video to cloud computing and other services. Overall revenues for Amazon rose 38 percent from last year to $60.5 billion. The growth was even more impressive considering Am ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Got a coastal bridge to retrofit? There's an optimal approach for that

Taiwan quake highlights hi-tech island's shoddy building past

Fukushima operator aims to double visitors by Tokyo Olympics

French watchdog points at Russia over radiation cloud

ROBO SPACE
Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

China sends twin BeiDou-3 navigation satellites into space

ROBO SPACE
Lasers reveal ancient Mayan civilization hiding beneath Guatemalan canopy

Scandinavians shaped by several waves of immigration

Truck damages Peru's ancient Nazca lines

Study details Peking Man's teeth

ROBO SPACE
Red pandas rescued in Laos stir fears over exotic pet trade

Cheetahs' inner ear is one-of-a-kind, vital to high-speed hunting

Scientists trace mysterious origin of Bornean elephants

All that pecking may give woodpeckers brain damage

ROBO SPACE
Scientists report big improvements in HIV vaccine production

Plague outbreak in Madagascar revived dread of a killer

'Mutant flu' could lead to more effective vaccine: study

Scientists find new clues about 'wave after wave' of germs that killed the Aztecs

ROBO SPACE
China says Swedish publisher held under criminal law

Hong Kong democracy activists walk free in appeal victory

Vatican's delicate China mission runs into trouble

Daughter's fears grow over bookseller missing in China

ROBO SPACE
Thai navy says 11 million pill haul a record from Laos

ROBO SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.