. Medical and Hospital News .




NANO TECH
Artificial atoms allow for magnetic resonance on individual cells
by Staff Writers
Barcelona, Spain (SPX) Feb 15, 2013


This image illustrates the nanomanipulation of an artificial atom. Credit: ICFO.

Researchers from the Institute of Photonic Sciences (ICFO), in collaboration with the CSIC and Macquarie University in Australia, have developed a new technique, similar to the MRI but with a much higher resolution and sensitivity, which has the ability to scan individual cells.

In an article published in Nature Nanotech, and highlighted by Nature, ICFO Prof. Romain Quidant explains how this was accomplished using artificial atoms, diamond nanoparticles doped with nitrogen impurity, to probe very weak magnetic fields such as those generated in some biological molecules.

The conventional MRI registers the magnetic fields of atomic nuclei in our bodies which have been previously excited by an external electromagnetic field. The collective response of all of these atoms makes it possible to diagnose and monitor the evolution of certain diseases.

However, this conventional technique has a diagnostic resolution on a millimetric scale. Smaller objects do not give enough signal to be measured.

The innovative technique proposed by the group led by Dr. Quidant significantly improves the resolution at the nanometer scale (nearly one million times smaller than the millimeter), making it possible to measure very weak magnetic fields, such as those created by proteins.

"Our approach opens the door for the performance of magnetic resonances on isolated cells which will offer new sources of information and allow us to better understand the intracellular processes, enabling noninvasive diagnosis," explains Michael Geiselmann, ICFO researcher who conducted the experiment.

Until now, it has only been possible to reach this resolution in the laboratory, using individual atoms at temperatures close to the absolute zero (approx. -273 degrees Celsius.)

Individual atoms are structures that are highly sensitive to their environment, with a great ability to detect nearby electromagnetic fields. The challenge these atoms present is that they are so small and volatile that in order to be manipulated, they must be cooled to temperatures near the absolute zero.

This complex process requires an environment that is so restrictive that it makes individual atoms unviable for potential medical applications. Artificial atoms used by Quidant and his team are formed by a nitrogen impurity captured within a small diamond crystal.

"This impurity has the same sensitivity as an individual atom but is very stable at room temperature due to its encapsulation. This diamond shell allows us to handle the nitrogen impurity in a biological environment and, therefore, enables us to scan cells" argues Dr. Quidant.

To trap and manipulate these artificial atoms, researchers use laser light. The laser works like tweezers, leading the atoms above the surface of the object to study and extract information from its tiny magnetic fields.

The emergence of this new technique could revolutionize the field of medical imaging, allowing for substantially higher sensitivity in clinical analysis, an improved capacity for early detection of diseases, and thus a higher probability for successful treatment.

.


Related Links
ICFO-The Institute of Photonic Sciences
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





NANO TECH
Boston College researchers' unique nanostructure produces novel 'plasmonic halos'
Chestnut Hill MA (SPX) Feb 12, 2013
Using the geometric and material properties of a unique nanostructure, Boston College researchers have uncovered a novel photonic effect where surface plasmons interact with light to form "plasmonic halos" of selectable output color. The findings appear in the journal Nano Letters. The novel nanostructure proved capable of manipulating electron waves known as surface plasmon polaritons, or ... read more


NANO TECH
Warning of emergency alert system hacks

No health effects from Fukushima: Japan researcher

Aid trickles into tsunami-hit Solomons despite aftershocks

Smartphones, tablets help UW researchers improve storm forecasts

NANO TECH
Boeing Awarded USAF Contract to Continue GPS Modernization

A system that improves the precision of GPS in cities by 90 percent

System improves GPS in city locations

Boeing to modernize U.S. Air Force GPS net

NANO TECH
Bilingual babies get good at grammar

UF researchers include humans in most comprehensive tree of life to date

The last Neanderthals of southern Iberia did not coexist with modern humans

Computer helping save lost languages

NANO TECH
Biodiversity helps protect nature against human impacts

Gabon bans large-calibre arms to stem elephant poaching

Reptiles are at risk, study finds

Offspring for first captive-bred Philippine eagle

NANO TECH
Cold resistance runs in genes

Flood-hit Mozambique battles cholera outbreak

Cambodia reports sixth bird flu death this year

China reports two human cases of bird flu: state media

NANO TECH
US slams 'horrific' toll of Tibet self-immolations

Tibetan monk's burning marks 100th immolation bid

Dodging the censors in China

Tibetan burns himself to death in China: reports

NANO TECH
16 gunmen killed in Thai military base attack: army

Japan police arrest mobster in Fukushima clean-up

Mexico scrambles to stem violence near capital

11 kidnapped Sudanese freed in Darfur: media

NANO TECH
Argentine inflation up, presaging hardship

China holiday retail sales jump 15%: government

EU financial transaction tax divides union

Recession-hit Japanese economy shrinks again




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement