Medical and Hospital News  
CHIP TECH
Assessing quantum dot photoemissions
by Staff Writers
Kumamoto, Japan (SPX) Mar 06, 2018

illustration only

Recent research from Kumamoto University in Japan has revealed that polyoxometalates (POMs), typically used for catalysis, electrochemistry, and photochemistry, may also be used in a technique for analyzing quantum dot (QD) photoluminescence (PL) emission mechanisms.

Quantum dots (QDs) are small, semiconducting nanocrystals or particles typically between two to ten nanometers in size. Discovered almost 40 years ago, their strong photoluminescent properties are a function of their size and shape making them useful for optical applications ranging from bioimaging to light emitting diodes.

Advances in high-quality QD research in the last ten years has produced highly luminescent but somewhat unstable QDs that also, unfortunately, use toxic or rare elements. Efforts to create stable QDs without these toxic or expensive elements has been a driving force in recent research.

To address these issues, researchers have been investigating how to change the size, morphology, and PL of tin dioxide (SnO2) to produce cheap, stable, and nontoxic colloidal semiconductor nanocrystals for various applications. Interestingly, the optical properties of SnO2 have been found to be effected by defects in both the bulk material and the QDs themselves.

Researchers from Professor Kida's Chemical Engineering Laboratory at Kumamoto University synthesized SnO2 QDs using a liquid phase method to produce QDs of various morphologies. The sizes of the QDs were controlled by changing the temperature during synthesis.

All of the QDs produced a blue PL when exposed to UV light (370 nm) and QDs 2 nm in size produced the best intensity. To examine the PL properties and mechanisms related to defects in the synthesized QDs, the researchers used materials (POMs) that quench florescence through excited state reactions.

POMs quenched emissions of the SnO2 QDs at peak intensities (401, 438, and 464 nm) but, to the surprise of the researchers, a previously unseen peak at 410 nm was revealed.

"We believe that the emission at 410 nm is caused by a bulk defect, which cannot be covered by POMs, that causes what is known as radiative recombination - the spontaneous emission of a photon with a wavelength related to the released energy," said project leader Professor Tetsuya Kida.

"This work has shown that our technique is effective in analyzing PL emission mechanisms for QDs. We believe it will be highly beneficial for future QD research."

Pramata, A. D., Suematsu, K., Quitain, A. T., Sasaki, M., and Kida, T. (2017). Synthesis of Highly Luminescent SnO2 Nanocrystals: Analysis of their Defect-Related Photoluminescence Using Polyoxometalates as Quenchers. Advanced Functional Materials, 28(4), 1704620. doi:10.1002/adfm.201704620


Related Links
Kumamoto University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Practical spin wave transistor one step closer
Groningen, Netherlands (SPX) Mar 06, 2018
University of Groningen physicists have managed to alter the flow of spin waves through a magnet, using only an electrical current. This is a huge step towards the spin transistor that is needed to construct spintronic devices. These promise to be much more energy efficient than conventional electronics. The results were published on 2 March in Physical Review Letters. Spin is a quantum mechanical property of electrons. Simply put, it makes electrons behave like small magnetic compass needles whic ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Belgium distributes iodine pills in case of nuclear accident

At the UN, a diplomatic dance decides the fate of nations

New evidence of nuclear fuel releases found at Fukushima

Venezuela's woes spread to zoos as animals feed on each other

CHIP TECH
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

CHIP TECH
One-month worth of memory training results in 30 minutes

Capturing brain signals with soft electronics

Bonobo and chimpanzee gestures share multiple meanings

Women blazing a trail in 'men's jobs'

CHIP TECH
Elephants kill 10 Rohingya refugees in Bangladesh: UN

India's endangered lion population increases to 600

Study suggests dogs understand objects they smell

Hummingbirds make cricket sounds at frequencies outside avian hearing range

CHIP TECH
DARPA Names Researchers Working to Halt Outbreaks in 60 Days or Less

China confirms first human case of H7N4 bird flu

UV light can kill airborne flu virus, study finds

Playing 20 Questions with Bacteria to Distinguish Harmless Organisms from Pathogens

CHIP TECH
Spoiler alert: Xi unlikely to lose term limit vote

Naps and noodle talk at Chinese parliament term limit 'debate'

China signals hardened stance on Hong Kong, Taiwan

US journalists fear China detained their families

CHIP TECH
Off West Africa, navies team up in fight against piracy

India seeks custody of fugitive arrested in Hong Kong

Vietnam cops seize $2.5 mn heroin in China border drug bust

The roots of Italian mafia lie in the lemon industry, new research suggests

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.