Medical and Hospital News  
EXO WORLDS
Astronomers discover largest molecule yet in a planet-forming disc
by Staff Writers
Munich, Germany (SPX) Mar 09, 2022

This composite image features an artistic impression of the planet-forming disc around the IRS 48 star, also known as Oph-IRS 48. The disc contains a cashew-nut-shaped region in its southern part, which traps millimetre-sized dust grains that can come together and grow into kilometre-sized objects like comets, asteroids and potentially even planets. Recent observations with the Atacama Large Millimeter/submillimeter Array (ALMA) spotted several complex organic molecules in this region, including dimethyl ether, the largest molecule found in a planet-forming disc to date. The emission signaling the presence of this molecule (real observations shown in blue) is clearly stronger in the disc's dust trap. A model of the molecule is also shown in this composite.

Using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, researchers at Leiden Observatory in the Netherlands have for the first time detected dimethyl ether in a planet-forming disc. With nine atoms, this is the largest molecule identified in such a disc to date. It is also a precursor of larger organic molecules that can lead to the emergence of life.

"From these results, we can learn more about the origin of life on our planet and therefore get a better idea of the potential for life in other planetary systems. It is very exciting to see how these findings fit into the bigger picture," says Nashanty Brunken, a Master's student at Leiden Observatory, part of Leiden University, and lead author of the study published in Astronomy and Astrophysics.

Dimethyl ether is an organic molecule commonly seen in star-forming clouds, but had never before been found in a planet-forming disc. The researchers also made a tentative detection of methyl formate, a complex molecule similar to dimethyl ether that is also a building block for even larger organic molecules.

"It is really exciting to finally detect these larger molecules in discs. For a while we thought it might not be possible to observe them," says co-author Alice Booth, also a researcher at Leiden Observatory.

The molecules were found in the planet-forming disc around the young star IRS 48 (also known as Oph-IRS 48) with the help of ALMA, an observatory co-owned by the European Southern Observatory (ESO). IRS 48, located 444 light-years away in the constellation Ophiuchus, has been the subject of numerous studies because its disc contains an asymmetric, cashew-nut-shaped "dust trap".

This region, which likely formed as a result of a newly born planet or small companion star located between the star and the dust trap, retains large numbers of millimetre-sized dust grains that can come together and grow into kilometre-sized objects like comets, asteroids and potentially even planets.

Many complex organic molecules, such as dimethyl ether, are thought to arise in star-forming clouds, even before the stars themselves are born. In these cold environments, atoms and simple molecules like carbon monoxide stick to dust grains, forming an ice layer and undergoing chemical reactions, which result in more complex molecules. Researchers recently discovered that the dust trap in the IRS 48 disc is also an ice reservoir, harbouring dust grains covered with this ice rich in complex molecules.

It was in this region of the disc that ALMA has now spotted signs of the dimethyl ether molecule: as heating from IRS 48 sublimates the ice into gas, the trapped molecules inherited from the cold clouds are freed and become detectable.

"What makes this even more exciting is that we now know these larger complex molecules are available to feed forming planets in the disc," explains Booth. "This was not known before as in most systems these molecules are hidden in the ice."

The discovery of dimethyl ether suggests that many other complex molecules that are commonly detected in star-forming regions may also be lurking on icy structures in planet-forming discs. These molecules are the precursors of prebiotic molecules such as amino acids and sugars, which are some of the basic building blocks of life.

By studying their formation and evolution, researchers can therefore gain a better understanding of how prebiotic molecules end up on planets, including our own.

"We are incredibly pleased that we can now start to follow the entire journey of these complex molecules from the clouds that form stars, to planet-forming discs, and to comets. Hopefully with more observations we can get a step closer to understanding the origin of prebiotic molecules in our own Solar System," says Nienke van der Marel, a Leiden Observatory researcher who also participated in the study.

Future studies of IRS 48 with ESO's Extremely Large Telescope (ELT), currently under construction in Chile and set to start operations later this decade, will allow the team to study the chemistry of the very inner regions of the disc, where planets like Earth may be forming.

Research Report: "A major asymmetric ice trap in a planet-forming disk: III. First detection of dimethyl ether"


Related Links
ESO
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
Microscopic view on asteroid collisions could help us understand planet formation
Cambridge UK (SPX) Mar 07, 2022
A new way of dating collisions between asteroids and planetary bodies throughout our Solar System's history could help scientists reconstruct how and when planets were born. The research, which was led by the University of Cambridge, combined dating and microscopic analysis of the Chelyabinsk meteorite - which fell to Earth and hit Microscopic view on asteroid collisions could help us understand planet formations in 2013 - to get more accurate constraints on the timing of ancient impact events. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Free trains for Ukrainians leaving Poland for Germany

IAEA says loses contact with Chernobyl nuclear data systems

Radioactive fuel, contaminated water: the Fukushima clean-up

What we know about the situation at Chernobyl after power cut

EXO WORLDS
Galileo 2nd generation satellites ready to navigate into the future

Northrop Grumman equips US Marines with Next Generation Handheld Targeting Device

The drone has landed

China completes health check on BDS satellite constellation

EXO WORLDS
Grains hints at origin of 7,000-year-old Swiss pile dwellings

Early humans kept old stone tools to preserve memory of their ancestors

Archaeologists discover innovative 40,000-year-old culture in China

University of Oxford researchers create largest ever human family tree

EXO WORLDS
UN holds biodiversity talks on deal to stave off mass extinction

Elephant kills Maasai man in Tanzania's Ngorongoro

Endangered bat not seen in four decades found in Rwanda

Gorillas in our midst: Baby apes boost Congo wildlife haven

EXO WORLDS
Mandatory Hong Kong Covid testing 'not a priority': city leader

Elderly care homes in eye of Hong Kong's deadly Covid storm

Chinese city locks down, Shanghai shuts schools as Covid spikes

China's zero-Covid policy under pressure as cases rise

EXO WORLDS
'Graft probes and power games': Xi's corruption drive turns to cash trail

CIA boss: China 'unsettled' by Russia's war in Ukraine

Virus chaos pushes more expats to join Hong Kong exodus

China's annual parliament opens in key year for Xi

EXO WORLDS
Iran, Russia, China start war games to counter 'maritime piracy'

Denmark shelves prosecution of Africa piracy suspects

Friction frays Gulf of Guinea anti-piracy efforts

EXO WORLDS








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.