Medical and Hospital News  
STELLAR CHEMISTRY
Astronomers measure wind speed on a brown dwarf
by Staff Writers
Charlottesville VA (SPX) Apr 10, 2020

Brown dwarf, left, and Jupiter, right. Artist's conception of brown dwarf illustrates magnetic field and atmosphere's top, which were observed at different wavelengths to determine wind speeds.

Astronomers have used the National Science Foundation's Karl G. Jansky Very Large Array (VLA) and NASA's Spitzer Space Telescope to make the first measurement of wind speed on a brown dwarf - an object intermediate in mass between a planet and a star.

Based on facts known about the giant planets Jupiter and Saturn in our own Solar System, a team of scientists led by Katelyn Allers of Bucknell University realized that they possibly could measure a brown dwarf's wind speed by combining radio observations from the VLA and infrared observations from Spitzer.

"When we realized this, we were surprised that no one else had already done it," Allers said.

The astronomers studied a brown dwarf called 2MASS J10475385+2124234, an object roughly the same size as Jupiter, but roughly 40 times more massive, about 34 light-years from Earth. Brown dwarfs, sometimes called "failed stars," are more massive than planets, but not massive enough to cause the thermonuclear reactions at their cores that power stars.

"We noted that the rotation period of Jupiter as determined by radio observations is different from the rotation period determined by observations at visible and infrared wavelengths," Allers said.

That difference, she explained, is because the radio emission is caused by electrons interacting with the planet's magnetic field, which is rooted deep in the planet's interior, while the infrared emission comes from the top of the atmosphere. The atmosphere is rotating more quickly than the interior of the planet, and the corresponding difference in velocities is due to atmospheric winds.

"Because we expect the same mechanisms to be at work in the brown dwarf, we decided to measure its rotation speeds with both radio and infrared telescopes," said Johanna Vos, of the American Museum of Natural History.

They observed 2MASS J10475385+2124234 with Spitzer in 2017 and 2018, and found that its infrared brightness varied regularly, likely because of the rotation of some long-lived feature in its upper atmosphere. The team did VLA observations in 2018 to measure the rotation period of the object's interior.

Just as with Jupiter, they found that the brown dwarf's atmosphere is rotating faster than its interior, with a calculated wind speed of about 1425 miles per hour. This is significantly faster than Jupiter's wind speed, about 230 mph.

"This agrees with theory and simulations that predict higher wind speeds in brown dwarfs," Allers said.

The astronomers said their technique can be used to measure winds not only on other brown dwarfs, but also on extrasolar planets.

"Because the magnetic fields of giant exoplanets are weaker than those of brown dwarfs, the radio measurements will need to be done at lower frequencies than those used for 2MASS J10475385+2124234, said Peter Williams of the Center for Astrophysics, Harvard and Smithsonian, and the American Astronomical Society.

"We're excited that our method can now be used to help us better understand the atmospheric dynamics of brown dwarfs and extrasolar planets," Allers said.


Related Links
National Radio Astronomy Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Beyond the Brim, Sombrero galaxy's halo suggests turbulent past
Baltimore MD (SPX) Feb 21, 2020
Surprising new data from NASA's Hubble Space Telescope suggests the smooth, settled "brim" of the Sombrero galaxy's disk may be concealing a turbulent past. Hubble's sharpness and sensitivity resolves tens of thousands of individual stars in the Sombrero's vast, extended halo, the region beyond a galaxy's central portion, typically made of older stars. These latest observations of the Sombrero are turning conventional theory on its head, showing only a tiny fraction of older, metal-poor stars in t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Democrats call for border wall contract review

Chinese help for virus gets wary reception in France

Australia, New Zealand mark Anzac Day with driveway vigils

Mapping Chernobyl fires from space

STELLAR CHEMISTRY
Quantum entanglement offers unprecedented precision for GPS, imaging and beyond

India develops unique model to hit enemy targets without positioning error

Apple data show dramatic impact of virus on movement

USSF reschedules next GPS launch

STELLAR CHEMISTRY
Genomes suggest parallel societies persisted through end of Neolithic

Examining heart extractions in ancient Mesoamerica

Origins of human language pathway in the brain at least 25 million years old

Oldest ever human genetic evidence clarifies dispute over our ancestors

STELLAR CHEMISTRY
Scientists uncover principles of universal self-assembly

Humans to blame for spread of coronavirus and other 'zoonoses'

Newly discovered black iguana species in Caribbean is endangered

Born Wild: The Next Generation

STELLAR CHEMISTRY
Asia virus latest: Ramadan begins; Pompeo targets China

Pompeo says China may have known of virus in November

Flickers of joy in China's virus ground zero mask deep fears

Social distancing app uses space to save lives

STELLAR CHEMISTRY
China rights lawyer vows fight to reunite with family

Hong Kong holds virus-delayed exams with strict health checks

Hong Kong political crisis deepens despite protest lull during virus

China rights lawyer barred from Beijing after prison: wife

STELLAR CHEMISTRY
Trump orders Pentagon to boost drug interdiction efforts

In Colombia, fleet of cartel narco-subs poses challenge for navy

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.