Medical and Hospital News  
STELLAR CHEMISTRY
Astronomers peer inside stars, finding giant magnets
by Staff Writers
Pasadena CA (SPX) Oct 23, 2015


Artistic representation (not to scale) of a red giant star with strong internal magnetic fields. Waves propagating through the star become trapped within the stellar core when a strong magnetic field is present, producing a "magnetic greenhouse effect" that reduces the observed amplitude of stellar pulsations. Image courtesy Rafael A. Garcia (SAp CEA), Kyle Augustson (HAO), Jim Fuller (Caltech) and Gabriel Perez (SMM, IAC), Photograph from AIA/SDO.

Astronomers have for the first time probed the magnetic fields in the mysterious inner regions of stars, finding they are strongly magnetized. Using a technique called asteroseismology, the scientists were able to calculate the magnetic field strengths in the fusion-powered hearts of dozens of red giants, stars that are evolved versions of our sun.

"In the same way medical ultrasound uses sound waves to image the interior of the human body, asteroseismology uses sound waves generated by turbulence on the surface of stars to probe their inner properties," says Caltech postdoctoral researcher Jim Fuller, who co-led a new study detailing the research.

The findings, published in the October 23 issue of Science, will help astronomers better understand the life and death of stars. Magnetic fields likely determine the interior rotation rates of stars; such rates have dramatic effects on how the stars evolve.

Until now, astronomers have been able to study the magnetic fields of stars only on their surfaces, and have had to use supercomputer models to simulate the fields near the cores, where the nuclear-fusion process takes place. "We still don't know what the center of our own sun looks like," Fuller says.

Red giants have a different physical makeup from so-called main-sequence stars such as our sun--one that makes them ideal for asteroseismology (a field that was born at Caltech in 1962, when the late physicist and astronomer Robert Leighton discovered the solar oscillations using the solar telescopes at Mount Wilson). The cores of red-giant stars are much denser than those of younger stars. As a consequence, sound waves do not reflect off the cores, as they do in stars like our sun. Instead, the sound waves are transformed into another class of waves, called gravity waves.

"It turns out the gravity waves that we see in the red giants do propagate all the way to the center of these stars," says co-lead author Matteo Cantiello, a specialist in stellar astrophysics from UC Santa Barbara's Kavli Institute for Theoretical Physics (KITP).

This conversion from sound waves to gravity waves has major consequences for the tiny shape changes, or oscillations, that red giants undergo. "Depending on their size and internal structure, stars oscillate in different patterns," Fuller says.

In one form of oscillation pattern, known as the dipole mode, one hemisphere of the star becomes brighter while the other becomes dimmer. Astronomers observe these oscillations in a star by measuring how its light varies over time.

When strong magnetic fields are present in a star's core, the fields can disrupt the propagation of gravity waves, causing some of the waves to lose energy and become trapped within the core. Fuller and his coauthors have coined the term "magnetic greenhouse effect" to describe this phenomenon because it works similarly to the greenhouse effect on Earth, in which greenhouse gases in the atmosphere help trap heat from the sun.

The trapping of gravity waves inside a red giant causes some of the energy of the star's oscillation to be lost, and the result is a smaller than expected dipole mode.

In 2013, NASA's Kepler space telescope, which can measure stellar brightness variations with incredibly high precision, detected dipole-mode damping in several red giants. Dennis Stello, an astronomer at the University of Sydney, brought the Kepler data to the attention of Fuller and Cantiello.

Working in collaboration with KITP director Lars Bildsten and Rafael Garcia of France's Alternative Energies and Atomic Energy Commission, the scientists showed that the magnetic greenhouse effect was the most likely explanation for dipole-mode damping in the red giants. Their calculations revealed that the internal magnetic fields of the red giants were as much as 10 million times stronger than Earth's magnetic field.

"This is exciting, as internal magnetic fields play an important role for the evolution and ultimate fate of stars," says Professor of Theoretical Astrophysics Sterl Phinney, Caltech's executive officer for astronomy, who was not involved in the study.

A better understanding of the interior magnetic fields of stars could also help settle a debate about the origin of powerful magnetic fields on the surfaces of certain neutron stars and white dwarfs, two classes of stellar corpses that form when stars die.

"The magnetic fields that they find in the red-giant cores are comparable to those of the strongly magnetized white dwarfs," Phinney says. "The fact that only some of the red giants show the dipole suppression, which indicates strong core fields, may well be related to why only some stars leave behind remnants with strong magnetic fields after they die."

The asteroseismology technique the team used to probe red giants probably will not work with our sun. "However," Fuller says, "stellar oscillations are our best probe of the interiors of stars, so more surprises are likely."

The paper is entitled "Asteroseismology Can Reveal Strong Internal Magnetic Fields in Red Giant Stars." In addition to Fuller, Cantiello, and Bildsten, the other coauthor is Dennis Stello from the University of Sydney.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
California Institute of Technology
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Smallest galaxies are yielding big answers
New Haven CT (SPX) Oct 23, 2015
An international research team led by Yale University postdoctoral researcher Hakim Atek recently discovered more than 250 distant galaxies, including some of the faintest, smallest galaxies in the universe. The team relied upon new images from the Hubble Space Telescope, focusing on a trio of cosmic magnifying glasses. Scientists have long wondered how the universe pierced the heavy veil ... read more


STELLAR CHEMISTRY
Libya vet steered Noah's ark of pets to safety

Hungarian PM says migrant flow 'look like army'

First Fukushima worker diagnosed with radiation-linked cancer: Japan official

Nearly 2,000 died in hajj stampede: foreign data

STELLAR CHEMISTRY
Russian-Chinese Sat NavSystem to Launch on Silk Road, EEU Markets

ISRO looking to extend GPS services to SAARC countries

Last of the dozen GPS IIF satellites arrive at CCAFS for processing

Glonass system can fully switch to domestic electronics in 2 years

STELLAR CHEMISTRY
Study: Cadaver arms suggest human fists evolved for punching, too

Mathematically modeling the mind

Being rich in the Middle Ages led to an unhealthy life

Third ancient spearhead found on N.J. shore

STELLAR CHEMISTRY
Tiny plant shows us how living things cope with big changes

Crocodiles actually do sleep with one eye open

Fossils reveal humans were greater threat than climate change to Caribbean wildlife

How plants turn into zombies

STELLAR CHEMISTRY
Algae virus can jump to mammalian cells

Malawi receives $300 million grant to fight AIDS

Iraq cholera cases grow, spread to Kurdish region

Antiviral compound offers full protection from Ebola in nonhuman primates

STELLAR CHEMISTRY
Exiled Tibetans vote for new political leader

Hong Kong police, 'beaten' protester, all face charges

Tibetan writer released by China after 10 years in jail: group

China pledges veteran pension funding after protests

STELLAR CHEMISTRY
Villagers recall fear as troops fired in 'Chapo' raid

Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

STELLAR CHEMISTRY
China's Xi promises no 'hard landing' for economy

China economic growth hits lowest since financial crisis

Angry Chinese investor stabs asset management firm CEO

China billionaires overtake US: survey









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.