Medical and Hospital News  
STELLAR CHEMISTRY
Astrophysicists map out the light energy contained within the Milky Way
by Staff Writers
London, UK (SPX) Jul 31, 2017


An all-sky image of the Milky Way, as observed by the Planck Space Observatory in infrared. The data contained in this image were used in this research and were essential in calculating the distribution of the light energy of our galaxy. Credit Credit: ESA / HFI / LFI consortia.

For the first time, a team of scientists have calculated the distribution of all light energy contained within the Milky Way, which will provide new insight into the make-up of our galaxy and how stars in spiral galaxies such as ours form. The study is published in the journal Monthly Notices of the Royal Astronomical Society.

This research, conducted by astrophysicists at the University of Central Lancashire (UCLan), in collaboration with colleagues from the Max Planck Institute for Nuclear Physics in Heidelberg, Germany and from the Astronomical Institute of the Romanian Academy, also shows how the stellar photons, or stellar light, within the Milky Way control the production of the highest energy photons in the Universe, the gamma-rays.

This was made possible using a novel method involving computer calculations that track the destiny of all photons in the galaxy, including the photons that are emitted by interstellar dust, as heat radiation.

Previous attempts to derive the distribution of all light in the Milky Way based on star counts have failed to account for the all-sky images of the Milky Way, including recent images provided by the European Space Agency's Planck Space Observatory, which map out heat radiation or infrared light.

Lead author Prof Cristina Popescu from the University of Central Lancashire, said: "We have not only determined the distribution of light energy in the Milky Way, but also made predictions for the stellar and interstellar dust content of the Milky Way."

By tracking all stellar photons and making predictions for how the Milky Way should appear in ultraviolet, visual and heat radiation, scientists have been able to calculate a complete picture of how stellar light is distributed throughout our Galaxy. An understanding of these processes is a crucial step towards gaining a complete picture of our Galaxy and its history.

The modelling of the distribution of light in the Milky Way follows on from previous research that Prof Popescu and Dr Richard Tuffs from the Max Planck Institute for Nuclear Physics conducted on modelling the stellar light from other galaxies, where the observer has an outside view.

Commenting on the research, Dr Tuffs, one of the co-authors of the paper, said: "It has to be noted that looking at galaxies from outside is a much easier task than looking from inside, as in the case of our Galaxy."

Scientists have also been able to show how the stellar light within our Galaxy affects the production of gamma-ray photons through interactions with cosmic rays. Cosmic rays are high-energy electrons and protons that control star and planet formation and the processes governing galactic evolution. They promote chemical reactions in interstellar space, leading to the formation of complex and ultimately life-critical molecules.

Dr Tuffs added: "Working backwards through the chain of interactions and propagations, one can work out the original source of the cosmic rays."

The research, funded by the Leverhulme Trust, was strongly interdisciplinary, bringing together optical and infrared astrophysics and astro-particle physics.

Prof Popescu notes: "We had developed some of our computational programs before this research started, in the context of modelling spiral galaxies, and we need to thank the UK's Science and Technology Facility Council (STFC) for their support in the development of these codes. This research would also not have been possible without the support of the Leverhulme Trust, which is greatly acknowledged."

Research paper

STELLAR CHEMISTRY
Milky Way's origins are not what they seem
Chicago IL (SPX) Jul 27, 2017
In a first-of-its-kind analysis, Northwestern University astrophysicists have discovered that, contrary to previously standard lore, up to half of the matter in our Milky Way galaxy may come from distant galaxies. As a result, each one of us may be made in part from extragalactic matter. Using supercomputer simulations, the research team found a major and unexpected new mode for how galaxi ... read more

Related Links
Royal Astronomical Society
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Smart sensors could save lives

New phase change mechanism could lead to new class of chemical vapor sensors

Robot finds possible melted fuel inside Fukushima reactor

Cheap 3D printed prosthetics could be game changer for Nepal

STELLAR CHEMISTRY
IAI, Honeywell Aerospace team for GPS anti-jam system

Russia, China to Set Up Pilot Zone to Test National Navigation Systems

India Plans to Roll Out National GPS Next Year

Orbital Alliance Techsystems receives contract for GPS artillery

STELLAR CHEMISTRY
How did early humans survive aridity and prolonged drought in Africa

In saliva, clues to a 'ghost' species of ancient human

Artifacts suggest humans arrived in Australia earlier than thought

Startup touts neuro-stimulation as 'medicine for the brain'

STELLAR CHEMISTRY
How fear alone can cause animal extinction

Bienvenue! French zoo announces first ever panda pregnancy

Woman held at S.Africa airport for rhino horn smuggling

Star chefs in Mexico to defend biodiversity

STELLAR CHEMISTRY
Injectable AIDS drug may work 'as well' as pills

Scientists divulge latest in HIV prevention

Swaziland halves world's highest HIV infection rate

Women with HIV in Cameroon still stigmatised

STELLAR CHEMISTRY
Botswana confirms Dalai Lama visit despite China anger

China anti-graft watchdog probes Politburo member

Chinese police detain suspected pyramid scheme protesters

Chinese dissident Liu Xiaobo's ashes buried at sea

STELLAR CHEMISTRY
US lists China among worst human trafficking offenders

Golden Triangle narco-gangs churning out new highs, UN warns

UN counter-drug official kidnapped in Colombia: officials

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.