Medical and Hospital News  
AEROSPACE
At 3,836 mph, which way does the air flow?
by Staff Writers
Buffalo NY (SPX) Mar 14, 2019

illustration only

If you've ever been to an air show, or lived near an air force base, you're familiar with sonic booms.

These deafening noises are created by aircraft exceeding the speed of sound, roughly 767 mph. They explain, in part, why passenger airliners cruise the skies at slower and less auditorily offensive speeds.

University at Buffalo aerospace engineer James Chen is working to solve problems associated with exceeding the sound barrier.

"Imagine flying from New York City to Los Angeles in an hour. Imagine incredibly fast unmanned aerial vehicles providing more updated and nuanced information about Earth's atmosphere, which could help us better predict deadly storms," says Chen, PhD, assistant professor in the Department of Mechanical and Aerospace Engineering at UB's School of Engineering and Applied Sciences.

Chen is the corresponding author of a study published Jan. 3 in the Journal of Engineering Mathematics. The study pertains to Austrian physicist Ludwig Boltzmann's classical kinetic theory, which uses the motion of gas molecules to explain everyday phenomena, such as temperature and pressure.

Chen's work extends classical kinetic theory into high-speed aerodynamics, including hypersonic speed, which begins at 3,836 mph or roughly five times the speed of sound. The new study and others by Chen in influential academic journals attempt to solve long-standing problems associated with high-speed aerodynamics.

Supersonic passenger jets
The idea of supersonic passenger jets is not new. Perhaps the most famous is the Concorde, which flew from 1976-2003. While successful, it was dogged by noise complaints and expensive operating costs.

More recently, Boeing announced plans for a hypersonic airliner and NASA is working on a supersonic project called QueSST, short for Quiet Supersonic Technology.

"Reduction of the notorious sonic boom is a just a start. In supersonic flight, we must now answer the last unresolved problem in classical physics: turbulence," says Chen, whose work is funded by the U.S. Air Force's Young Investigator Program, which supports engineers and scientists who show exceptional ability and promise for conducting basic research.

To create more efficient, less expensive and quieter aircraft that exceed the sound barrier, the research community needs to better understand what is happening with the air surrounding these vehicles.

"There is so much we don't know about the airflow when you reach hypersonic speeds. For example, eddies form around the aircraft creating turbulence that affect how aircraft maneuver through the atmosphere," he says.

Morphing continuum theory
To solve these complex problems, researchers have historically used wind tunnels, which are research laboratories that replicate the conditions vehicles encounter while in the air or space. While effective, these labs can be expensive to operate and maintain.

As a result, many researchers, including Chen, have pivoted toward direct numerical simulations (DNS).

"DNS with high-performance computing can help resolve turbulence problems. But the equations we have used, based upon the work of Navier and Stokes, are essentially invalid at supersonic and hypersonic speeds," says Chen.

His work in the Journal of Engineering Mathematics centers on morphing continuum theory (MCT), which is based on the fields of mechanics and kinetic theory. MCT aims to provide researchers with computationally friendly equations and a theory to address problems with hypersonic turbulence.

"The Center for Computational Research at UB provides a perfect platform for my team and me at the Multiscale Computational Physics Lab to pursue these difficult high-speed aerodynamics problems with high-performance computing," says Chen.

Ultimately, the work could lead to advancements into how supersonic and hypersonic aircraft are designed, everything from the vehicle's shape to what materials it is made of. The goal, he says, is a new class of aircraft which are faster, quieter, less expensive to operate and safer.

Research paper


Related Links
University at Buffalo
Aerospace News at SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


AEROSPACE
Air Force receives first AC-130J Ghostrider gunship
Washington (UPI) Mar 13, 2019
The U.S. Air Force announced the delivery of its newest gunship on Wednesday as the AC-130J Ghostrider was unveiled at Hurlburt Field, Fla. The plane is an upgrade of the Block 20 AC-130J, with Block 30 improved software and avionics. The aircraft is the first to be delivered to the Air Force's 4th Special Operations Squadron, 1st Special Operations Wing. Additional upgraded planes are meant to retire the AC-130U planes the Air Force has used for over 20 years. "The Block 30 AC-13 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
Hot or cold, rural residents more vulnerable to extreme temperatures

Court rules gunmaker Remington can be sued over Newtown massacre

Environment damage behind 1 in 4 global deaths, disease: UN

In Caracas, water an obsession after days of blackout

AEROSPACE
One step closer to a clock that could replace GPS and Galileo

ESA joins with business to invent the future of navigation

IAI unveils improved anti-jamming GPS

Orolia launches the world's first Galileo enabled PLB

AEROSPACE
Fossil teeth in Kenya help fill monkey evolution record gap

From stone chips to microchips: How tiny tools may have made us human

Chimps' cultural diversity threatened by humans, study says

The mind distracted: technology's battle for our attention

AEROSPACE
Fast and furious: Vietnam's elephant race draws cheers, and critics

Hungry moose are more tolerant of wolves

Scientists share plans for planetwide biodiversity census

Ecologists find a 'landscape of fearlessness' in a war-torn savannah

AEROSPACE
Facebook launches offensive to combat misinformation on vaccines

After IS, Mosul tackles another terror: super-resistant bacteria

Global maps enabling targeted interventions to reduce burden of mosquito-borne disease

Electronic nose better at sniffing out disease-carrying dogs in Brazil

AEROSPACE
West using Christianity to subvert Chinese state: official

Civilians trapped as Myanmar rebels squabble over expected China boom

US envoy defends his criticism of Chinese religious persecution

Tibet supporters in India mark 60 years since uprising

AEROSPACE
Sudan says Turkish naval ship to boost 'Red Sea security'

AEROSPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.