Medical and Hospital News  
TECH SPACE
At the limits of detectability
by Staff Writers
Munich, Germany (SPX) Mar 11, 2019

Professor Dr. Juergen Hauer (left) and first author Erling Thyrhaug with their measuring instrument. In the background, spectra taken with it.

While spectroscopic measurements are normally averaged over myriad molecules, a new method developed by researchers at the Technical University of Munich (TUM) provides precise information about the interaction of individual molecules with their environment. This will accelerate the identification of efficient molecules for future photovoltaic technologies, for example.

An international team led by the TUM chemist Professor Jurgen Hauer has now succeeded in determining the spectral properties of individual molecules. The researchers acquired the absorption and emission spectra of the investigated molecules over a broad spectral range in a single measurement to accurately determine how the molecules interact with their environment, capturing and releasing energy.

Normally, these kinds of measurements are averaged over thousands, even millions, of molecules, sacrificing important detail information. "Previously, emission spectra could be routinely acquired, but absorption measurements on individual molecules were extremely expensive," explains Hauer. "We have now attained the ultimate limit of detectability."

Compact apparatus, quick measurement
The new method is based on a compact, merely DIN-A4-sized instrument that the Munich chemists developed in collaboration with colleagues at the Politecnico di Milano.

The key: It generates a double laser pulse with a controlled delay in between. The second pulse modulates the emission spectrum in a specific manner, which in turn provides information about the absorption spectrum. This information is then evaluated using a Fourier transformation.

"The primary advantage is that we can, with little effort, transform a conventional measurement setup for acquiring emission spectra into a device for measuring emission and absorption spectra," says Hauer. The measurement itself is relatively easy. "At nine o'clock in the morning, we installed the apparatus into the setup at the University of Copenhagen," says Hauer. "At half past eleven, already, we had our first useful measurement data."

On the tracks of photosynthesis
Using the new spectroscopy method, chemists hope to now study individual molecules, to understand phenomena such as the energy flow in metal-organic compounds and physical effects in molecules when they come into contact with water and other solvents.

The influence of solvents at the single molecule level is still poorly understood. The chemists also want to display the flow of energy in a time-resolved manner to understand why energy flows faster and more efficiently in certain molecules than in others. "Specifically, we are interested in the transfer of energy in biological systems in which photosynthesis takes place," says Hauer.

The goal: organic solar cells
The researchers have cast their view on the light collection complex LH2 for future applications. "Once we understand the natural light-harvesting complexes, we can start thinking about artificial systems for deployment in photovoltaics," says Hauer. The findings could form the basis for future technologies in photovoltaics. The goal is the development of a novel organic solar cell.

Research Report: Single-molecule excitation-emission spectroscopy


Related Links
Technical University of Munich (TUM)
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Researchers engineer a tougher fiber
Raleigh NC (SPX) Mar 11, 2019
North Carolina State University researchers have developed a fiber that combines the elasticity of rubber with the strength of a metal, resulting in a tougher material that could be incorporated into soft robotics, packaging materials or next-generation textiles. "A good way of explaining the material is to think of rubber bands and metal wires," says Michael Dickey, corresponding author of a paper on the work and Alcoa Professor of Chemical and Biomolecular Engineering at NC State. "A rubbe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Anger, grief sweep Iraq's Mosul as ferry disaster toll hits 100

Italy's Senate blocks Salvini migrant trial

French soldiers on duty for next 'yellow vest' protest

French plan for army backup in 'yellow vest' protests draws fire

TECH SPACE
Frequency Electronics to qualify atomic clocks for potential use on GPS 3F Satellites

Earliest known Mariner's Astrolabe published in Guinness Book of Records

Earliest known mariner's astrolabe described in new study

One step closer to a clock that could replace GPS and Galileo

TECH SPACE
From stone chips to microchips: How tiny tools may have made us human

Fossil teeth in Kenya help fill monkey evolution record gap

Chimps' cultural diversity threatened by humans, study says

The mind distracted: technology's battle for our attention

TECH SPACE
'Insectageddon' is 'alarmist by bad design': Scientists point out the study's major flaws

Research predicts what makes evolution go backwards

At Kenyan orphanage, baby elephants find a new life, and love

Sun bears mimic each other's facial expressions

TECH SPACE
Zika study may 'supercharge' vaccine research

Facebook launches offensive to combat misinformation on vaccines

After IS, Mosul tackles another terror: super-resistant bacteria

Global maps enabling targeted interventions to reduce burden of mosquito-borne disease

TECH SPACE
Police detain labour activist in southern China: wife

Hong Kong to build $79 bn artificial island

Chasing celluloid dreams at China's Tinseltown

Chinese metro apologises after goth makeup removal demand

TECH SPACE
Sudan says Turkish naval ship to boost 'Red Sea security'

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.