Medical and Hospital News
CHIP TECH
Atomic dance gives rise to a magnet
Chiral phonons excited by the circularly polarized terahertz light pulses generate ultrafast magnetization in cerium fluoride. Fluorine ions (red, fuchsia) are set into motion by circularly polarized terahertz light pulses (yellow spiral), where red denotes the ions with the largest motion in the chiral phonon mode. The cerium ion is represented in teal. The compass needle represents the magnetization induced by the rotating atoms.
Atomic dance gives rise to a magnet
by Staff Writers
Houston TX (SPX) Nov 10, 2023

Quantum materials hold the key to a future of lightning-speed, energy-efficient information systems. The problem with tapping their transformative potential is that, in solids, the vast number of atoms often drowns out the exotic quantum properties electrons carry.

Rice University researchers in the lab of quantum materials scientist Hanyu Zhu found that when they move in circles, atoms can also work wonders: When the atomic lattice in a rare-earth crystal becomes animated with a corkscrew-shaped vibration known as a chiral phonon, the crystal is transformed into a magnet.

According to a study published in Science, exposing cerium fluoride to ultrafast pulses of light sends its atoms into a dance that momentarily enlists the spins of electrons, causing them to align with the atomic rotation. This alignment would otherwise require a powerful magnetic field to activate, since cerium fluoride is naturally paramagnetic with randomly oriented spins even at zero temperature.

"Each electron possesses a magnetic spin that acts like a tiny compass needle embedded in the material, reacting to the local magnetic field," said Rice materials scientist and co-author Boris Yakobson. "Chirality - also called handedness because of the way in which left and right hands mirror each other without being superimposable - should not affect the energies of the electrons' spin. But in this instance, the chiral movement of the atomic lattice polarizes the spins inside the material as if a large magnetic field were applied."

Though short-lived, the force that aligns the spins outlasts the duration of the light pulse by a significant margin. Since atoms only rotate in particular frequencies and move for a longer time at lower temperatures, additional frequency- and temperature-dependent measurements further confirm that magnetization occurs as a result of the atoms' collective chiral dance.

"The effect of atomic motion on electrons is surprising because electrons are so much lighter and faster than atoms," said Zhu, Rice's William Marsh Rice Chair and an assistant professor of materials science and nanoengineering. "Electrons can usually adapt to a new atomic position immediately, forgetting their prior trajectory. Material properties would remain unchanged if atoms went clockwise or counterclockwise, i.e., traveled forward or backward in time - a phenomenon that physicists refer to as time-reversal symmetry."

The idea that the collective motion of atoms breaks time-reversal symmetry is relatively recent. Chiral phonons have now been experimentally demonstrated in a few different materials, but exactly how they impact material properties is not well understood.

"We wanted to quantitatively measure the effect of chiral phonons on a material's electrical, optical and magnetic properties," Zhu said. "Because spin refers to electrons' rotation while phonons describe atomic rotation, there is a naive expectation that the two might talk with each other. So we decided to focus on a fascinating phenomenon called spin-phonon coupling."

Spin-phonon coupling plays an important part in real-world applications like writing data on a hard disk. Earlier this year, Zhu's group demonstrated a new instance of spin-phonon coupling in single molecular layers with atoms moving linearly and shaking spins.

In their new experiments, Zhu and the team members had to find a way to drive a lattice of atoms to move in a chiral fashion. This required both that they pick the right material and that they create light at the right frequency to send its atomic lattice aswirl with the help of theoretical computation from the collaborators.

"There is no off-the-shelf light source for our phonon frequencies at about 10 terahertz," explained Jiaming Luo, an applied physics graduate student and the lead author of the study. "We created our light pulses by mixing intense infrared lights and twisting the electric field to 'talk' to the chiral phonons. Furthermore, we took another two infrared light pulses to monitor the spin and atomic motion, respectively."

In addition to the insights into spin-phonon coupling derived from the research findings, the experimental design and setup will help inform future research on magnetic and quantum materials.

"We hope that quantitatively measuring the magnetic field from chiral phonons can help us develop experiment protocols to study novel physics in dynamic materials," Zhu said. "Our goal is to engineer materials that do not exist in nature through external fields - such as light or quantum fluctuations."

Research Report:Large effective magnetic fields from chiral phonons in rare-earth halides

Related Links
Rice University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
TU Delft researchers discover new ultra strong material for microchip sensors
Delft, Netherlands (SPX) Nov 03, 2023
Researchers at Delft University of Technology, led by assistant professor Richard Norte, have unveiled a remarkable new material with potential to impact the world of material science: amorphous silicon carbide (a-SiC). Beyond its exceptional strength, this material demonstrates mechanical properties crucial for vibration isolation on a microchip. Amorphous silicon carbide is therefore particularly suitable for making ultra-sensitive microchip sensors. The range of potential applications is vast. ... read more

CHIP TECH
Amid shortages in war-torn Gaza, doctors perform surgery with no anesthesia

G7 foreign ministers call for 'urgent' humanitarian pause in Gaza

US Supreme Court weighs whether abusers have right to own guns

U.N. pleads for Gaza access; Netanyahu offers 'tactical little pauses' but no cease-fire

CHIP TECH
PASSport project testing

Zephr raises $3.5M to bring next-gen GPS to major industries

Satnav test on remote island lab

Trimble and Kyivstar to provide GNSS correction services in Ukraine

CHIP TECH
How "blue" and "green" appeared in a language that didn't have words for them

Brain health in over 50s deteriorated more rapidly during the pandemic

Climate change likely impacted human populations in the Neolithic and Bronze Age

Eternal rest -- at the foot of a tree

CHIP TECH
EU strikes deal on key biodiversity bill

Endangered Galapagos tortoises suffer from human waste: study

Diplomatic snub? Washington's pandas head home to China

Researchers reveal true crabs' epic ancient odyssey from sea to land and back again

CHIP TECH
Bird flu kills more than 500 marine mammals in Brazil

Top Chinese virus expert dead at 60

Study discounts belief 1918 flu pandemic targeted healthy young adults

Bangladesh swamped by record dengue deaths

CHIP TECH
Chinese former bank chief given life in prison for bribery

Japan urges China to release national jailed on spy charges

China's 'Singles Day' shopping bonanza loses its lustre

China ready to improve ties with US 'at all levels': VP

CHIP TECH
EU probes AliExpress to examine curbs on illegal products

Myanmar rebels fire top officials wanted by China for online scams

China opposes sanctions, says fentanyl crisis 'rooted in' US

Myanmar junta angry at China over crime blockbuster 'tarnishing'

CHIP TECH
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.