. Medical and Hospital News .




.
TIME AND SPACE
Atomic-scale visualization of electron pairing in iron superconductors
by Staff Writers
Upton, NY (SPX) May 08, 2012

Illustration only.

By measuring how strongly electrons are bound together to form Cooper pairs in an iron-based superconductor, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Cornell University, St. Andrews University, and collaborators provide direct evidence supporting theories in which magnetism holds the key to this material's ability to carry current with no resistance.

Because the measurements take into account the electronic bands and directions in which the electrons are traveling, which was central to testing the theoretical predictions, this research strengthens confidence that this type of theory may one day be used to identify or design new materials with improved properties - namely, superconductors operating at temperatures far higher than today's.

"In the best possible world you would be able to take this theory and plug in different chemical elements until you find a combination that should work as a superconductor at higher temperatures," said team leader Seamus Davis, Director of the Center for Emergent Superconductivity at Brookhaven and the J.G. White Distinguished Professor of Physical Sciences at Cornell University. Such materials could be used for real world, energy-saving technologies, such as zero-loss power transmission lines, without the need for expensive coolants.

Scientists have been trying to understand the mechanism underlying so-called "high-temperature" superconductivity ever since discovering materials that could carry current with no resistance at temperatures somewhat above the operating realm of conventional superconductors, which must be chilled to near absolute zero (0 kelvin, or -273 degrees Celsius).

Though still mighty chilly, these high-Tc materials' operating temperatures - some as high as 145K (-130 degrees C) - offer hope that such materials could one day be designed to operate at room temperature.

One key to superconductivity is the formation of electron pairs. Scientists hypothesized that if these negatively charged particles have their magnetic moments pointing in opposite directions, they could overcome their mutual repulsion to join forces in so-called Cooper pairs - thus carrying current with no loss.

"Many people suspected you could take materials that naturally have alternating magnetic moments on adjacent electrons - antiferromagnetic materials - and convert them into superconductors," Davis said. But to prove this conjecture hasn't been possible with copper-based, or cuprate, superconductors - the first high-Tc superconductors discovered starting some 25 years ago.

"You can make a robust antiferromagnetic cuprate insulator, but in that state it's hard to get the magnetic electrons to pair and then move around and make a superconductor," Davis said.

Then, in 2008, when iron-based superconductors were discovered, the idea that magnetism plays a role in high-Tc superconductivity was revived. But determining that role was a very complex problem.

"In each iron atom there are five magnetic electrons, not just one," Davis said. "And each, as it moves around the crystal, does so in a separate electronic band. In order to find out if the magnetic interactions between electrons are generating the superconductivity, you have to measure what's called the anisotropic energy gap - how strongly bound together the electrons are in a pair - depending on the electrons' directions on the different electronic bands."

Theorists Dung-Hai Lee of the University of California at Berkeley, Peter Hirschfeld of the University of Florida, and Andrey Chubukov of the University of Wisconsin among others had developed different versions of a theory that predicts what those measurements should be if magnetism were the mechanism for superconductivity.

"It was our job to test those predictions," Davis said. But at first, the techniques didn't exist to make the measurements. "We had to invent them," Davis said.

Two scientists working with Davis, Milan P. Allan of Brookhaven, Cornell, and the University of Saint Andrews (where Davis also teaches) and Andreas W. Rost of Cornell and St. Andrews - the lead authors on the paper - figured out how to do the experiments and identified an iron-based material (lithium iron arsenide) in which to test the predictions.

Their method, multi-band Bogoliubov quasiparticle scattering interference, found the "signature" predicted by the theorists:

"The strength of the 'glue' holding the pairs together is different on the different bands, and on each band it depends on the direction that the electrons are traveling - with the pairing usually being stronger in a given direction than at 45 degrees to that direction," Davis said.

"This is the first experimental evidence direct from the electronic structure in support of the theories that the mechanism for superconductivity in iron-based superconductors is due primarily to magnetic interactions," he said.

The next step is to use the same technique to determine whether the theory holds true for other iron superconductors. "We and others are working on that now," Davis said.

If those experiments show that the theory is indeed correct, the model could then be used to predict the properties of other elements and combinations - and ideally point the way toward engineering new materials and higher-temperature superconductors.

The findings are published in the May 4, 2012 issue of Science.

Related Links
DOE/Brookhaven National Laboratory
Understanding Time and Space




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TIME AND SPACE
Researchers from the University of Zurich discover new particle at CERN
Zurich, Switzerland (SPX) May 02, 2012
Physicists from the University of Zurich have discovered a previously unknown particle composed of three quarks in the Large Hadron Collider (LHC) particle accelerator. A new baryon could thus be detected for the first time at the LHC. The baryon known as Xi_b^* confirms fundamental assumptions of physics regarding the binding of quarks. In particle physics, the baryon family refers to par ... read more


TIME AND SPACE
Clinton to leave China for Bangladesh cauldron

Japan to go nuclear-free for first time since 1970

S. Korea starts building new nuclear reactors

Can Nature's Beauty Lift Citizens From Poverty?

TIME AND SPACE
Czech Republic approves EU Galileo agency move to Prague

China launches two navigation satellites

Astrium built Galileo satellites fit and fully operational in orbit

First payload ready for next batch of Galileo satellites

TIME AND SPACE
Darwinian selection continues to influence human evolution

Iceman mummy yields oldest blood seen

Genes shed light on spread of agriculture in Stone Age Europe

A middle-ear microphone

TIME AND SPACE
Africa's last rhinos threatened by poaching

Fundraising blitz in South Africa to save the rhino

Ecosystem Effects of Biodiversity Loss Rival Climate Change and Pollution

Bigger gorillas better at attracting mates and raising young

TIME AND SPACE
Flu study that sparked censorship row is published at last

Dutch okays mutant bird flu study's publication

Rio declares dengue epidemic

Climate right for Asian mosquito to spread in N. Europe

TIME AND SPACE
Chinese activist could find life in US tough: exiles

Chen case exposes limits to central power in China

Eyes on China after Clinton deal on dissident

US in talks with blind China activist after plea for help

TIME AND SPACE
War planes strike suspected Somali pirate base: coastguard

India proposes norms for Indian Ocean anti-piracy patrols

Iran navy rescues China crew from hijacked freighter

Drones will seek pirates at sea

TIME AND SPACE
Toshiba's profit drops by nearly half to $921 mn

Outside View: U.S. work force shrinks

Outside View: Modest U.S. jobs growth

China and India manufacturing boosts recovery hopes


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement