Medical and Hospital News  
EARLY EARTH
Before animals, evolution waited eons to inhale
by Staff Writers
Atlanta GA (SPX) Jul 27, 2016


Earliest animals evolved in the mid to late Proterozoic Eon and lie deep in the fossil record. Image courtesy Douglas Erwin / National Museum of Natural History. For a larger version of this image please go here.

A couple of times in four billion years, evolution has slowed to a crawl. And an eon or so has passed before more complex life forms, such as simple animals, could arise. Evolution may have been waiting for a decent breath of oxygen, said researcher Chris Reinhard. And that was hard to come by. His research team is tracking down O2 concentrations in oceans, where earliest animals evolved.

By doing so, they have jumped into the middle of a heated scientific debate on what rising oxygen did, if anything, to charge up evolutionary eras. Now, Reinhard, a geochemist from the Georgia Institute of Technology, is shaking up conventional thinking with the help of computer modeling.

That thinking goes like this: "Atmospheric oxygen had a value of 'x' back then, and so we just assume that the whole ocean is a beaker that equilibrates with that value," Reinhard said. Then all evolving animals everywhere had the selfsame concentration of oxygen to live on.

But oceans are expansive and asymmetrical; deep here, shallower there, frosty at the poles, soupy at the girth. Turbulences, streams and temperatures distribute sediment, algae, salt - and gases like oxygen - into lopsided stores.

Oceans leave some areas teeming and others vacuous. Then they reshuffle their loads. Even today, concentrations of dissolved oxygen vary widely from ocean region to ocean region.

Equating the global ocean to a placid lab beaker? "This is an okay thought experiment to start with, but I think everybody would acknowledge over a beer that it's simplistic," said Reinhard, an assistant professor at Georgia Tech's School of Earth and Atmospheric Sciences.

Create a stir
So, he and his team modeled how oxygen entered oceans from the atmosphere and from aquatic sources, and how oceans might have shuffled it around during the mid to late Proterozoic Eon. That was 0.6 to 1.8 billion years ago, when the Earth's atmosphere had only fraction of the breathable oxygen it does today.

In the model, the ocean didn't share and share alike, but instead pushed dissolved O2 into areas of concentration that shifted starkly as corresponding concentrations in the atmosphere rose.

That has implications for the way scientists think about the timeframe for animal evolution on Earth and for future estimates for the probability of complex life on exoplanets.

The results and detailed modeling parameters appear on Monday, July 25, 2016, in the Proceedings of the National Academy of Sciences. The research was funded by the National Science Foundation and the NASA Astrobiology Institute.

Be unreliable
Humans and today's large animals would quickly suffocate in a Proterozoic-like world. And according to Reinhard's research, its oceans may not have been as conducive to evolution as previously thought.

"What really matters for the early evolution of animals is ocean oxygen. To a certain degree, it's really shallow sea floor oxygen that matters," Reinhard said.

Those ocean shallows are called benthic regions, and in the Proterozoic Eon, they received plenty of sunlight and nutrients key to evolution. Even today, they're teeming with life, which makes them popular places for snorkeling and fishing.

But the new model shows oxygen levels there may have been unreliable during the mid to late Proterozoic Eon.

Rob the rich
Earliest metazoans, the term for multicellular beings that are animals, may have done alright with scarce amounts and survived O2 droughts - periods of anoxia. But they also evolved into a world of rising breathable oxygen.

Reinhard's computational model accounted for scenarios from atmospheric oxygen concentrations of 0.5 to 10 percent of today's levels.

At low concentrations, the simulation showed oceanic oxygen building up around the equator, where hot spots in the water produced higher amounts of it. Then - as the atmosphere began filling with oxygen - in the oceans, it shifted toward the poles, where cold water was able to hold on to more of it.

Formerly oxygen-rich regions were robbed of conditions friendly to animal evolution.

In the beaker way of thinking, higher atmospheric oxygen should have meant evenly rising levels of oceanic oxygen for animals evolving everywhere, even in those depleted regions. "In reality, the ecology they would have been facing would have been pretty severe," Reinhart said.

Follow dead animals
Reinhard's team could have framed the study around other organisms but chose metazoans. "We focused on animals principally because that's where we have the best empirical constraints for the oxygen levels that the organisms need," he said.

Their evolution also left behind a calendar convenient to scientific study - a progressive fossil record that became more complex as oxygen levels rose.

In Earth's roughly 3.7-billion-year history of life, animals turned up in about the most recent third. Furry, feathery and even scaly animals have only appeared in the last few hundred million years.

As oxygen became plentiful, critters got bigger, smarter, faster, and became predators and prey. Pursuit and flight accelerated as gasping lungs and gills pulled in more of the powerful oxidant to exponentially boost metabolism.

Evolution went into overdrive, diversifying the fossil record over time. But dive back down into it a billion or so years, to the mid to late Proterozoic, and animal fossils get smaller and simpler. You find little, squishy sponges and jellyfish.

Think (eco)logically
Their stony imprints mark the beginnings of that very complex evolution, and they may point to oxygen concentrations at the time.

"We were focusing on changes in atmospheric oxygen during the time period in which animals appear in the fossil record and trying to link that quantitatively to the oxygen levels early animals would have needed," Reinhard said.

His computational oxygen distribution model was based on the current constellation of Earth's continents - vastly different from that of the Proterozoic Eon.

But Reinhard said that difference would not change the conclusions. And the concepts they support should also apply to predictions about life on exoplanets with differing continental structures.

"The basic take-home - that we need to be thinking ecologically rather than just in terms of a single oxygen level - is going to prove to be pretty robust," he said.

That beaker? May have just flown out the window.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Georgia Institute of Technology
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
After the age of dinosaurs came the age of ant farmers
Panama City, Panama (SPX) Jul 21, 2016
A group of South American ants has farmed fungi since shortly after the dinosaurs died out, according to an international research team including Smithsonian scientists. The genes of the ant farmers and their fungal crops reveal a surprisingly ancient history of mutual adaptations. This evolutionary give-and-take has led to some species - the leafcutter ants - developing industrial-scale farming ... read more


EARLY EARTH
Scientists release recommendations for building land in coastal Louisiana

Study: Crumbling school buildings yield crummy scores

Taiwan buses recalled after deadly fire disaster

Ex-Marine 'assassinated' Baton Rouge cops: police

EARLY EARTH
Twinkle, Twinkle, GPS

Like humans, lowly cockroach uses a GPS to get around, scientists find

Raytheon hits next-generation GPS milestone

China promises GPS system that's "reliable, safe and free"

EARLY EARTH
Biologists home in on paleo gut for clues to our evolutionary history

Early humans used mammoth ivory tool to make rope

Technological and cultural innovations amongst early humans not sparked by climate change

Genomes from Zagros mountains reveal different Neolithic ancestry

EARLY EARTH
University of Montana research unveils new player in lichen symbiosis

Ghost orchid scientists aim to restore rare Florida flowers

Science analyzes rare rapport between birds, people

Gas sensors 'see' through soil to analyze microbial interactions

EARLY EARTH
Colombia declares its Zika epidemic over

'Sugar daddies' and 'blessers': A threat to AIDS fight

Parasites hitch ride down Silk Road

Early HIV vaccine results lead to major trial: researchers

EARLY EARTH
Top Chinese military leader gets life sentence for corruption

'Rebel' Chinese village chief charged over bribes

Works by purged Chinese leader published in Hong Kong

Chinese liberal magazine in limbo after forced reshuffle

EARLY EARTH
Indonesia frees vessel captured by suspected pirates: navy

Founder of online underworld bank gets 20 years in prison

Colombia authorizes air strikes against criminal gangs

EARLY EARTH
Bank hacks raise fears for financial sector

Brexit is risk to global growth, says G20

Microsoft delivers earnings surprise, stock rises

US warns against devaluation ahead of G20 finance meeting









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.