Medical and Hospital News  
NANO TECH
Big discoveries about tiny particles
by Staff Writers
Newark DE (SPX) Oct 09, 2018

illustration only

From photonics to pharmaceuticals, materials made with polymer nanoparticles hold promise for products of the future. However, there are still gaps in understanding the properties of these tiny plastic-like particles.

Now, Hojin Kim, a graduate student in chemical and biomolecular engineering at the University of Delaware, together with a team of collaborating scientists at the Max Planck Institute for Polymer Research in Germany, Princeton University and the University of Trento, has uncovered new insights about polymer nanoparticles. The team's findings, including properties such as surface mobility, glass transition temperature and elastic modulus, were published in Nature Communications.

Under the direction of MPI Prof. George Fytas, the team used Brillouin light spectroscopy, a technique that spelunks the molecular properties of microscopic nanoparticles by examining how they vibrate.

"We analyzed the vibration between each nanoparticle to understand how their mechanical properties change at different temperatures," Kim said. "We asked, 'What does a vibration at different temperatures indicate? What does it physically mean?' "

The characteristics of polymer nanoparticles differ from those of larger particles of the same material. "Their nanostructure and small size provide different mechanical properties," Kim said. "It's really important to understand the thermal behavior of nanoparticles in order to improve the performance of a material."

Take polystyrene, a material commonly used in nanotechnology. Larger particles of this material are used in plastic bottles, cups and packaging materials.

"Polymer nanoparticles can be more flexible or weaker at the glass transition temperature at which they soften from a stiff texture to a soft one, and it decreases as particle size decreases," Kim said. That's partly because polymer mobility at small particle surface can be activated easily. It's important to know when and why this transition occurs, since some products, such as filter membranes, need to stay strong when exposed to a variety of conditions.

For example, a disposable plastic cup made with the polymer polystyrene might hold up in boiling water - but that cup doesn't have nanoparticles. The research team found that polystyrene nanoparticles start to experience the thermal transition at 343 Kelvin (158 degrees F), known as the softening temperature, below a glass transition temperature of 372 K (210 F) of the nanoparticles, just short of the temperature of boiling water. When heated to this point, the nanoparticles don't vibrate - they stand completely still.

This hadn't been seen before, and the team found evidence to suggest that this temperature may activate a highly mobile surface layer in the nanoparticle, Kim said. As particles heated up between their softening temperature and glass transition temperature, the particles interacted with each other more and more. Other research groups have previously suspected that glass transition temperature drops with decreases in particle size decreases because of differences in particle mobility, but they could not observe it directly.

"Using different method and instruments, we analyzed our data at different temperatures and actually verified there is something on the polymer nanoparticle surface that is more mobile compared to its core," he said.

By studying interactions between the nanoparticles, the team also uncovered their elastic modulus, or stiffness.

Next up, Kim plans to use this information to build a nanoparticle film that can govern the propagation of sound waves.

Eric Furst, professor and chair of the Department of Chemical and Biomolecular Engineering at UD, is also a corresponding author on the paper.

"Hojin took the lead on this project and achieved results beyond what I could have predicted," said Furst. "He exemplifies excellence in doctoral engineering research at Delaware, and I can't wait to see what he does next."


Related Links
University of Delaware
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Precise control of multimetallic one-nanometer cluster formation achieved
Tokyo, Japan (SPX) Oct 01, 2018
Researchers in Japan have found a way to create innovative materials by blending metals with precision control. Their approach, based on a concept called atom hybridization[1], opens up an unexplored area of chemistry that could lead to the development of advanced functional materials. Multimetallic clusters - typically composed of three or more metals - are garnering attention as they exhibit properties that cannot be attained by single-metal materials. If a variety of metal elements are freely b ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
In quake-hit Haiti, hospital labors to treat the wounded

International aid effort for Indonesia quake-tsunami swings into gear

Indonesia quake kids traumatised as rescuers race against clock

Dozens of Moroccan migrants rescued at sea

NANO TECH
New Study Tracks Hurricane Harvey Stormwater with GPS

Lockheed awarded $1.4B for first GPS IIIF satellites

China launches twin BeiDou-3 satellites

First satellite for GPS III upgrades to launch in December

NANO TECH
Neanderthal-like features in 450,000-year-old fossil teeth from the Italian Peninsula

Neuroscientists identify the origins of 'free will' inside the brain

How millions of neurons become unique

Ancient bird bones redate human activity in Madagascar by 6,000 years

NANO TECH
India watches for deadly virus as lion deaths spike

More than 4 billion birds stream overhead during fall migration

Fad for 'lucky' tail hair threatens Vietnam elephants

Judge restores protections for Yellowstone grizzlies, hunts canceled

NANO TECH
With genetic tweak, mosquito population made extinct

Trump unveils revised US biodefense strategy

Indonesia's quake-hit Lombok battles with malaria, 137 infected

Deadly 'rat fever' in flood-ravaged Indian state

NANO TECH
Hong Kong marks fourth anniversary of Umbrella Movement

Disappearing act: What happened to Hong Kong's Umbrella Art?

Ibsen play pulled in China after audience demand free speech

Pope calls on Chinese Catholics to reconcile after bishop deal

NANO TECH
New president to inherit a Mexico plagued with grisly violence

Vessel tracking exposes the dark side of trading at sea

NANO TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.