. Medical and Hospital News .




STELLAR CHEMISTRY
Bizarre alignment of planetary nebulae
by Staff Writers
Paris (ESA) Sep 05, 2013


This image shows an example of a bipolar planetary nebula known as PN Hb 12 -- popularly known as Hubble 12 -- in the constellation of Cassiopeia. The striking shape of this nebula, reminiscent of a butterfly or an hourglass, was formed as a Sun-like star approached the end of its life and puffed its outer layers into the surrounding space. For bipolar nebulae, this material is funnelled towards the poles of the ageing star, creating the distinctive double-lobed structure. Credit: NASA, ESA Acknowledgement: Josh Barrington.

Astronomers have used the NASA/ESA Hubble Space Telescope and ESO's New Technology Telescope to explore more than 100 planetary nebulae in the central bulge of our galaxy. They have found that butterfly-shaped members of this cosmic family tend to be mysteriously aligned - a surprising result given their different histories and varied properties.

The final stages of life for a star like our Sun result in the star puffing its outer layers out into the surrounding space, forming objects known as planetary nebulae in a wide range of beautiful and striking shapes. One type of such nebulae, known as bipolar planetary nebulae, create ghostly hourglass or butterfly shapes around their parent stars.

All these nebulae formed in different places and have different characteristics. Neither the individual nebulae, nor the stars that formed them, interact with other planetary nebulae. However, a new study by astronomers from the University of Manchester, UK, now shows surprising similarities between some of these nebulae: many of them line up in the sky in the same way [1].

"This really is a surprising find and, if it holds true, a very important one," explains Bryan Rees of the University of Manchester, one of the paper's two authors. "Many of these ghostly butterflies appear to have their long axes aligned along the plane of our galaxy. By using images from both Hubble and the NTT we could get a really good view of these objects, so we could study them in great detail."

The astronomers looked at 130 planetary nebulae in the Milky Way's central bulge. They identified three different types, and peered closely at their characteristics and appearance [2].

"While two of these populations were completely randomly aligned in the sky, as expected, we found that the third -- the bipolar nebulae -- showed a surprising preference for a particular alignment," says the paper's second author Albert Zijlstra, also of the University of Manchester. "While any alignment at all is a surprise, to have it in the crowded central region of the galaxy is even more unexpected."

Planetary nebulae are thought to be sculpted by the rotation of the star system from which they form. This is dependent on the properties of this system -- for example, whether it is a binary [3], or has a number of planets orbiting it, both of which may greatly influence the form of the blown bubble. The shapes of bipolar nebulae are some of the most extreme, and are thought to be caused by jets blowing mass outwards from the star system perpendicular to its orbit.

"The alignment we're seeing for these bipolar nebulae indicates something bizarre about star systems within the central bulge," explains Rees. "For them to line up in the way we see, the star systems that formed these nebulae would have to be rotating perpendicular to the interstellar clouds from which they formed, which is very strange."

While the properties of their progenitor stars do shape these nebulae, this new finding hints at another more mysterious factor. Along with these complex stellar characteristics are those of our Milky Way; the whole central bulge rotates around the galactic centre. This bulge may have a greater influence than previously thought over our entire galaxy -- via its magnetic fields. The astronomers suggest that the orderly behaviour of the planetary nebulae could have been caused by the presence of strong magnetic fields as the bulge formed.

As such nebulae closer to home do not line up in the same orderly way, these fields would have to have been many times stronger than they are in our present-day neighbourhood [4].

"We can learn a lot from studying these objects," concludes Zijlstra. "If they really behave in this unexpected way, it has consequences for not just the past of individual stars, but for the past of our whole galaxy."

[1] The "long axis" of a bipolar planetary nebula slices though the wings of the butterfly, whilst the "short axis" slices through the body.

[2] The shapes of the planetary nebula images were classified into three types, following conventions: elliptical, either with or without an aligned internal structure, and bipolar.

[3] A binary system consists of two stars rotating around their common centre of gravity.

[4] Very little is known about the origin and characteristics of the magnetic fields that were present in our galaxy when it was young, so it is unclear how they have changed over time.

.


Related Links
ESA/Hubble Information Centre
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





STELLAR CHEMISTRY
MOND predicts dwarf galaxy feature prior to observations
Cleveland OH (SPX) Sep 03, 2013
A modified law of gravity correctly predicted, in advance of the observations, the velocity dispersion - the average speed of stars within a galaxy relative to each other - in 10 dwarf satellite galaxies of the Milky Way's giant neighbor Andromeda. The relatively large velocity dispersions observed in these types of dwarf galaxies is usually attributed to dark matter. Yet predictions mad ... read more


STELLAR CHEMISTRY
Niger asks for foreign help for flood victims

Olympics: Tokyo 2020 is a bid in the shadow of Fukushima

Italy says Syria crisis to worsen refugee problem

Australian police arrest suspected people smugglers

STELLAR CHEMISTRY
Galileo's secure service tested by Member States

European Union countries in test of home-grown GPS system

Satellite tracking of zebra migrations in Africa is conservation aid

'Spoofing' attack test takes over ship's GPS navigation at sea

STELLAR CHEMISTRY
Building better brain implants: The challenge of longevity

Researchers say human foot not unique, more like those of great apes

Archaeologists find evidence of separate Neanderthal cultures in Europe

Spread of prehistoric peoples in California tied to environment

STELLAR CHEMISTRY
Washington's new panda cub is a girl, zoo says

S.Africa's rhino poaching toll passes 600 for the year

Thai village under siege from marauding monkeys

Too cute to kill? US split on suburban deer

STELLAR CHEMISTRY
Experts urge renewed push on US-Thai HIV vaccine

Scientists find another flu virus in Chinese chickens

Long-term study backs early HIV drugs for children

Cambodian boy dies from bird flu: WHO

STELLAR CHEMISTRY
Eye-gouging attack casts spotlight on Chinese backwater

China's Guangzhou to empty labour camps: media

China frees dissident convicted on Yahoo! evidence: group

China's anti-graft body orders mooncakes off the menu

STELLAR CHEMISTRY
Russia home to text message fraud "cottage industry"

Global gangs rake in $870 bn a year: UN official

Mexican generals freed after cartel charges dropped

Mexicans turn to social media to report on drug war

STELLAR CHEMISTRY
China government bond futures higher on debut

Outside View: Part-time positions dominate U.S. jobs picture

OECD trims US, China outlook, warns on monetary policy

India manufacturing hits over 4-year low as China rebounds




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement