. Medical and Hospital News .




.
FLORA AND FAUNA
Body rebuilding: Researchers regenerate muscle in mice
by Staff Writers
Worcester, MA (SPX) Dec 14, 2011

Raymond Page is an assistant professor of biomedical engineering at Worcester Polytechnic Institute and chief scientific officer at CellThera. Credit: Worcester Polytechnic Institute.

A team of scientists from Worcester Polytechnic Institute (WPI) and CellThera, a private company located in WPI's Life Sciences and Bioengineering Center, have regenerated functional muscle tissue in mice, opening the door for a new clinical therapy to treat people who suffer major muscle trauma.

The team used a novel protocol to coax mature human muscle cells into a stem cell-like state and grew those reprogrammed cells on biopolymer microthreads. The threads were placed in a wound created by surgically removing a large section of leg muscle from a mouse.

Over time, the threads and cells restored near-normal function to the muscle, as reported in the paper "Restoration of Skeletal Muscle Defects with Adult Human Cells Delivered on Fibrin Microthreads," published in the current issue of the journal Tissue Engineering.

Surprisingly, the microthreads, which were used simply as a scaffold to support the reprogrammed human cells, actually seemed to accelerate the regeneration process by recruiting progenitor mouse muscle cells, suggesting that they alone could become a therapeutic tool for treating major muscle trauma.

"We are pleased with the progress of this work, and frankly we were surprised by the level of muscle regeneration that was achieved," said Raymond Page, assistant professor of biomedical engineering at WPI, chief scientific officer at CellThera, and corresponding author on the paper.

The current study is part of a multi-year program funded, in part, by grants from the National Institutes of Health and DARPA, the advanced research program of the U.S Department of Defense, to support the development of new technologies and therapies for people who suffer serious wounds and limb loss.

Mammalian skeletal muscles are able to repair small injuries caused by excessive exertion or minor trauma by recruiting muscle progenitor cells, which have not fully developed into muscle fibers, to the site of injury to rebuild the muscle. With major injuries, however, the body's first priority is to stop the bleeding, so scar tissue forms quickly at the wound site and overrides any muscle repair.

In the current study, the WPI/CellThera team combined two novel technologies to try to prevent scar formation and prompt muscle re-growth. The first was a method they had developed previously for reprogramming mature human skin cells without employing viruses or extra genes (Cloning, Stem Cells. 2009 Jul 21). The reprogrammed cells express stem cell genes and multiply in great numbers, but don't differentiate into specific tissues.

The second was the use of biopolymer microthreads as a scaffold to support the cells. Developed by George Pins, associate professor of biomedical engineering at WPI, the threads--about the thickness of a human hair--are made of fibrin, a protein that helps blood clot.

Researchers removed a portion of the tibialis anterior leg muscle in several mice (the muscle was chosen because injury to it affects the foot's range of motion but doesn't prevent the mice from walking). In some mice, the injuries were left to heal on their own. In others, the wound was filled with bundles of microthreads seeded with reprogrammed human muscle cells.

The untreated mice developed significant scarring at the injury site, with no restoration of muscle function. In sharp contrast, the mice that received the reprogrammed cells grew new muscle fibers and developed very little scarring.

Tests done 10 weeks after implantation showed that the regenerated tibialis anterior muscle functioned with nearly as much strength as an uninjured muscle. The scientists expected that most of the regenerated muscle would be composed of human cells, since the implanted cells were from human muscle.

Surprisingly, most of the new muscle fibers were made of mouse cells. The team theorized that the fibrin microthreads, which in their composition and shape are similar to muscle fibers, may encourage resident mouse progenitor cells to migrate into the wound and begin restoring the tissue (they may also forestall the natural inflammatory response that leads to scarring after a major injury).

This surprise finding suggests that fibrin microthreads alone could be used to treat major muscle trauma while research on enhancing regeneration with reprogrammed human cells continues. "The contribution of the fibrin microthreads alone to wound healing should not be understated," the authors wrote.

"While this clearly points to room for improving cell delivery techniques, it suggests that fibrin microthreads alone have tremendous potential for reducing fibrosis and remodeling large muscle injuries. Future studies will address, more completely, the capability of microthreads alone and determine, at what point, a combinational cell therapy is required for full functional tissue restoration."

Related Links
Worcester Polytechnic Institute
Darwin Today At TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



FLORA AND FAUNA
Law enforcement vital for great ape survival
Leipzig, Germany (SPX) Dec 13, 2011
Recent studies show that the populations of African great apes are rapidly decreasing. Many areas where apes occur are scarcely managed and weakly protected. Researchers from the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have carried out an international collaborative project together with field researchers and park managers. The project aim was to evaluate ho ... read more


FLORA AND FAUNA
Google Street View explores Japan disaster zone

Japan minister questions radioactive water dump

The hermit of Fukushima 'staying put' despite risks

Scientists Assess Radioactivity in the Ocean from Japan Nuclear Power Facility

FLORA AND FAUNA
Lightweight GPS tags help research track animals of all sizes

Russia to put two more Glonass satellites into operation

Germans join probe of mobile phone tracker

China launches 10th satellite for independent navigation system

FLORA AND FAUNA
Taxi driver training changes brain structure

Why Are Humans Not Smarter

Study finds wide distrust of atheists

How our brains keep us focused

FLORA AND FAUNA
World's smallest frogs discovered in New Guinea

Body rebuilding: Researchers regenerate muscle in mice

Swarms of bees could unlock secrets to human brains

Law enforcement vital for great ape survival

FLORA AND FAUNA
A logistics approach to malaria in Africa

Nighttime images help track disease from the sky

Novel drug wipes out deadliest malaria parasite through starvation

Left-handed iron corkscrews point to new weapon in battle against superbugs

FLORA AND FAUNA
China frees cyber dissident after eight years in jail

Besieged China villagers vow to keep up protests

China police block access to riot-hit village: locals

China detains two for 'spreading rumour' on web

FLORA AND FAUNA
China starts Mekong patrols

China deploys patrol boats on Mekong: state media

Seychelles invites China to set up anti-piracy base

Britain detains seven suspected pirates in Seychelles

FLORA AND FAUNA
Japan buys 13% of eurozone rescue fund sale

China has less than decade to remake economy: US

China to keep property rules, follow 'prudent' policy

Walker's World: One cheer for euro summit


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement