Medical and Hospital News  
STELLAR CHEMISTRY
Borexino experiment: analysis of ten years of neutrino signals
by Staff Writers
Munich, Germany (SPX) Oct 26, 2018

New findings about the processes inside the sun.

Researchers from the Borexino collaboration have published the hitherto most comprehensive analysis of neutrinos from the Sun's core processes. The results confirm previous assumptions about the processes inside the sun.

According to the standard solar model, around 99 percent of the Sun's energy stems from a sequence of fusion processes in which hydrogen is converted to helium. It begins with the fusion of two protons into a heavy hydrogen nucleus, a process aptly called the pp chain.

In some of these processes, neutrinos of characteristic energies are also released, allowing the progression of the pp chain to be reconstructed very accurately.

First overall assessment of the Sun's neutrino spectrum
Buried deep in the mountains of the Italian Gran Sasso massif, the Borexino experiment, which focusses on detecting these solar neutrinos, has been running since 2007.

The Borexino scientists are now presenting, for the first time, a comprehensive investigation of the fusion processes in the pp chain via neutrinos. They determined the interaction rates of the individual processes with unprecedented precision.

The results substantiate the solar model
"All in all, the results confirm our theoretical perceptions of what goes on inside the Sun," says Prof. Stefan Schonert, Professor of Experimental Astroparticle Physics and Co-Spokesperson of the Collaborative Research Center 1258 at the Technical University of Munich and member of the new ORIGINS Cluster.

The Borexino scientists also calculated the Sun's energy production rate and compared this to the well-known estimate based on the Sun's electromagnetic radiation. The two values are in good agreement.

This shows that solar activity has been constant for at least one hundred thousand years, which is how long it takes sunlight to leave the energy production zone inside the Sun. Neutrinos, in contrast reach the Earth in only 8 minutes.

What is the chemical composition of the Sun?
The Borexino results also provide an interesting clue to a previously unresolved solar mystery: What is the concentration of nuclei heavier than hydrogen and helium, the so-called metallicity? The higher the concentration of heavy nuclei, the more light is absorbed. This influences the temperature, size, brightness and life of the Sun.

To date, the Sun was assumed to have low metallicity. "Our results now indicate a solar temperature profile that suggests high metallicity," summarizes Prof. Lothar Oberauer of TUM and one of the founding members of the Borexino experiment.

Research Report: "Comprehensive measurement of pp-chain solar neutrinos"


Related Links
Technical University of Munich (TUM)
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
CREDO's first light: The global particle detector begins its collection of scientific data
Warsaw, Poland (SPX) Oct 05, 2018
Now everyone can become co-creator and co-user of the largest detector of cosmic ray particles in history - as well as a potential co-discoverer. All you need is a smartphone and the CREDO Detector application turned on overnight. Under development for over two years, the CREDO project is entering the era of its maturity. This week, at the Institute of Nuclear Physics of the Polish Academy of Sciences in Cracow, the "first light" of the detector was presented, that is, the first data of scientific value ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Malta takes migants after Italy stand-off

US tech giants split over corporate tax to help homeless

Israel to resume Gaza fuel flow Wednesday: defence ministry

Indonesia drops disinfectant on quake-hit Palu

STELLAR CHEMISTRY
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

STELLAR CHEMISTRY
Bonobos make themselves appear smaller than they actually are

Human neurons are electrically compartmentalized, study finds

Dry conditions in East Africa half a million years ago possibly shaped human evolution

Lifespan 2040 ranking: US down, China up, Spain on top

STELLAR CHEMISTRY
Spotlighting differences in closely-related species

Tsetse fly out of Zimbabwe's hot Zambezi valley

New Caledonian crows can create compound tools

Rewilding landscapes can help to solve more than one problem

STELLAR CHEMISTRY
15 emerging technologies that could reduce global catastrophic biological risks

Vaccinating humans to protect mosquitoes from malaria

A step towards biological warfare with insects?

100 years on, Spanish Flu holds lessons for next pandemic

STELLAR CHEMISTRY
First journeys on Hong Kong-Macau-mainland mega bridge

Top Chinese official in Macau dies in fall from home: Beijing

China's president inaugurates Hong Kong-mainland mega bridge

China VP pays highest-level visit to Israel since 2000

STELLAR CHEMISTRY
New president to inherit a Mexico plagued with grisly violence

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.