. Medical and Hospital News .




.
EARLY EARTH
Breakthrough Model Reveals Evolution of Ancient Nervous Systems
by Staff Writers
Pittsburgh PA (SPX) Jan 16, 2012

Seashells differ substantially between the closely related Conus species, and the complexity of the patterns makes it difficult to properly characterize their similarities and differences.

Determining the evolution of pigmentation patterns on mollusk seashells - which could aid in the understanding of ancient nervous systems - has proved to be a challenging feat for researchers. Now, however, through mathematical equations and simulations, University of Pittsburgh and University of California, Berkeley, researchers have used 19 different species of the predatory sea snail Conus to generate a model of the pigmentation patterns of mollusk shells.

"There is no evolutionary record of nervous systems, but what you're seeing on the surface of seashells is a space-time record, like the recording of brain-wave activity in an electroencephalogram (EEG)," said project coinvestigator G. Bard Ermentrout, Pitt Distinguished University Professor of Computational Biology and a professor in the Kenneth P. Dietrich School of Arts and Sciences' Department of Mathematics.

Seashells differ substantially between the closely related Conus species, and the complexity of the patterns makes it difficult to properly characterize their similarities and differences. It also has proven difficult to describe the evolution of pigmentation patterns or to draw inferences about how natural selection might affect them.

In a paper published in the Proceedings of the National Academy of Sciences (PNAS) Online, Ermentrout and his colleagues attempt to resolve this problem by combining models based on natural evolutionary relationships with a realistic developmental model that can generate pigmentation patterns of the shells of the various Conus species.

In order for UC Berkeley scientists to create simulations, Ermentrout and his collaborators developed equations and a neural model for the formation of the pigmentation patterns on shell surfaces. With the equations in hand, Zhenquiang Gong, a UC Berkeley graduate student in engineering, used a computer to simulate the patterns on the shells, hand fitting the parameters to create a basic model for the patterns of a given species.

The results of this study have allowed the researchers to estimate the shell pigmentation patterns of ancestral species, identify lineages in which one or more parameters have evolved rapidly, and measure the degree to which different parameters correlate with the evolutionary development and history of the organisms.

Since the parameters are telling the researchers something about the circuitry of the mollusks' nervous system, this is an indirect way to study the evolution of a simple nervous system.

"We've found that some aspects of the nervous system have remained quite stable over time, while there is a rapid evolution of other portions," said Ermentrout.

"In the future, we hope to use similar ideas to understand other pattern-forming systems that are controlled by the nervous system," Ermentrout added.

"For instance, we would really like to develop models for some of the cephalopods like the cuttlefish and the octopus, which are able to change patterns on their skin in an instant."

Related Links
University of Pittsburgh
Explore The Early Earth at TerraDaily.com




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



EARLY EARTH
New insights into an ancient mechanism of mammalian evolution
London, UK (SPX) Jan 16, 2012
A team of geneticists and computational biologists in the UK have revealed how an ancient mechanism is involved in gene control and continues to drive genome evolution. The new study is published in the journal Cell. To function properly, mammalian tissues require the protein CTCF, which has several key activities including the regulation of genes and interaction with proteins in the cell' ... read more


EARLY EARTH
Simulating firefighting operations on a PC

UN aid appeal for Philippine floods falls short

Japan disaster builds international bridges

Still in ruins: Haiti marks two years after quake

EARLY EARTH
US Air Force Awards Lockheed Martin Contract for Third and Fourth GPS III Satellites

Raytheon to Develop Mission Critical Launch and Check Solution for Global Positioning System

First Galileo satellite GIOVE-A outlives design life to reach sixth anniversary

USAF Awards Contract to Lockheed Martin for GPS III Launch and Checkout Capability

EARLY EARTH
How the brain computes 3-dimensional structure

We May Be Less Happy, But Our Language Isn't

Canada urged to conceal fetal sex over abortion fears

Sitting pretty: bum's the word in Japan security

EARLY EARTH
New Information on the Waste-Disposal Units of Living Cells

Largest bird alters its foraging due to climate change

Fruit flies watch the sky to stay on course

Rhino poaching up in South Africa

EARLY EARTH
Does the La Nina weather pattern lead to flu pandemics

WHO lauds India's year without polio

Balkan countries join forces to fight HIV/AIDS stigma

Vietnam culls over 2,500 chickens in bird flu fight

EARLY EARTH
China's city dwellers overtake rural population

China village revolt leader named party boss

China arrests village head for arson: rights group

US ambassador sees China rights worsening

EARLY EARTH
Dutch marines ward off pirate attack

NATO warship assists Iranian vessel

China says shots fired at cargo boat on Mekong

Spanish navy repels pirate attack in Indian ocean: ministry

EARLY EARTH
China's economic growth slows to 9.2% in 2011

Walker's World: A new social contract

Outside View: Rating downgrades

EU faces downgrades as debt talks stall


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement