Free Newsletters - Space - Defense - Environment - Energy
..
. Medical and Hospital News .




ENERGY TECH
Breakthrough research produces brighter, more efficiently produced lighting
by Staff Writers
Santa Barbara CA (SPX) Nov 04, 2013


This illustration demonstrates how bright blue LED light, shone through its complementary yellow phosphor, yields white light. Credit: UCSB.

By determining simple guidelines, researchers at UC Santa Barbara's Solid State Lighting and Energy Center (SSLEC) have made it possible to optimize phosphors -- a key component in white LED lighting -- allowing for brighter, more efficient lights.

"These guidelines should permit the discovery of new and improved phosphors in a rational rather than trial-and-error manner," said Ram Seshadri, a professor in the university's Department of Materials as well as in its Department of Chemistry and Biochemistry, of the breakthrough contribution to solid-state lighting research. T

he results of this research, performed jointly with materials professor Steven DenBaars and postdoctoral associate researcher Jakoah Brgoch, appear in The Journal of Physical Chemistry.

LED (light-emitting diode) lighting has been a major topic of research due to the many benefits it offers over traditional incandescent or fluorescent lighting. LEDs use less energy, emit less heat, last longer and are less hazardous to the environment than traditional lighting.

Already utilized in devices such as street lighting and televisions, LED technology is becoming more popular as it becomes more versatile and brighter.

According to Seshadri, all of the recent advances in solid-state lighting have come from devices based on gallium nitride LEDs, a technology that is largely credited to UCSB materials professor Shuji Nakamura, who invented the first high-brightness blue LED.

In solid-state white lighting technology, phosphors are applied to the LED chip in such a way that the photons from the blue gallium nitride LED pass through the phosphor, which converts and mixes the blue light into the green-yellow-orange range of light. When combined evenly with the blue, the green-yellow-orange light yields white light.

The notion of multiple colors creating white may seem counterintuitive. With reflective pigments, mixing blue and yellow yields green; however, with emissive light, mixing such complementary colors yields white.

Art to science
Until recently, the preparation of phosphor materials was more an art than a science, based on finding crystal structures that act as hosts to activator ions, which convert the higher-energy blue light to lower-energy yellow/orange light.

"So far, there has been no complete understanding of what make some phosphors efficient and others not," Seshadri said. "In the wrong hosts, some of the photons are wasted as heat, and an important question is: How do we select the right hosts?"

As LEDs become brighter, for example a they are used in vehicle front lights, they also tend to get warmer, and, inevitably, this impacts phosphor properties adversely.

"Very few phosphor materials retain their efficiency at elevated temperatures," Brgoch said. "There is little understanding of how to choose the host structure for a given activator ion such that the phosphor is efficient, and such that the phosphor efficiency is retained at elevated temperatures."

However, using calculations based on density functional theory, which was developed by UCSB professor and 1998 Nobel Laureate Walter Kohn, the researchers have determined that the rigidity of the crystalline host structure is a key factor in the efficiency of phosphors: The better phosphors possess a highly rigid structure.

Furthermore, indicators of structural rigidity can be computed using density functional theory, allowing materials to be screened before they are prepared and tested.

This breakthrough puts efforts for high-efficiency, high-brightness, solid-state lighting on a fast track. Lower-efficiency incandescent and fluorescent bulbs -- which use relatively more energy to produce light -- could become antiquated fixtures of the past.

"Our target is to get to 90 percent efficiency, or 300 lumens per watt," said DenBaars, who also is a professor of electrical and computer engineering and co-director of the SSLEC. Current incandescent light bulbs, by comparison, are at roughly 5 percent efficiency, and fluorescent lamps are a little more efficient at about 20 percent.

"We have already demonstrated up to 60 percent efficiency in lab demos," DenBaars said.

.


Related Links
University of California - Santa Barbara
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ENERGY TECH
Urban Underground Holds Sustainable Energy
Karlsruhe, Germany (SPX) Nov 06, 2013
Vast energy sources are slumbering below big cities. Sustainable energies for heating in winter and cooling in summer may be extracted from heated groundwater aquifers. Researchers from KIT and ETH Zurich developed an analytical heat flux model and found that increasing heat in the underground is mainly caused by an increase in surface temperatures and heat release from buildings. Work of ... read more


ENERGY TECH
Space technologies boost disaster reduction int'l co-op

How to Manage Nature's Runaway Freight Trains

Uruguay to pull peacekeepers from Haiti: president

Storm-battered northern Europe slowly gets back to normal

ENERGY TECH
How pigeons may smell their way home

UK conservationists using location-based system ManagePlaces

A Better Way to Track Your Every Move

China's satellite navigation system to start oversea operation next year

ENERGY TECH
Study: Humans made sophisticated stone tools earlier than thought

Did hard-wired fear of snakes drive evolution of human vision?

Hair regeneration method is first to induce new human hair growth

No known hominin is ancestor of Neanderthals and modern humans

ENERGY TECH
Scientists study 'fishy' behavior to solve an animal locomotion mystery

CU-Boulder-led team gets first look at diverse life below rare tallgrass prairies

Chinese officials set 1,000 cats loose in forest: reports

Poacher shot dead in Zimbabwe game park

ENERGY TECH
Researchers find HIV's 'invisibility cloak'

Breakthrough in hunt for HIV vaccine

Poultry market closures do well to halt bird flu: study

SARS-like viruses can jump from bats to humans: study

ENERGY TECH
Empty chair to represent China's Ai Weiwei at Sweden film fest

Google boss calls for 'freedom of speech' in China

Rural Chinese school 'demolished for $1.6 bn resort'

China vows to silence Dalai Lama in Tibet

ENERGY TECH
Spain jails six Somalis for piracy

Pirates kidnap two American sailors off Nigeria

Seaman Guard owner to fight arrest of ship's crew in India

Somali pirates on trial for seizing French yacht

ENERGY TECH
Walker's World: Breaking the banks

Asia manufacturing picks up but data points to headwinds

China GDP figures wrong by $610 billion: report

Researcher is optimistic about meeting 'Grand Challenge' of global prosperity




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement