. Medical and Hospital News .




TECH SPACE
Building better structural materials
by Staff Writers
Washington DC (SPX) Dec 17, 2012


The deformation of nanocrystalline materials has been controversial because it was thought that below a certain grain size, the structural irregularities would not form and the deformation would be dictated by motions of the boundary between grains instead.

When materials are stressed, they eventually change shape. Initially these changes are elastic, and reverse when the stress is relieved. When the material's strength is exceeded, the changes become permanent.

This could result in the material breaking or shattering, but it could also re-shape the material, such as a hammer denting a piece of metal. Understanding this last group of changes is the focus of research from a team including Carnegie's Ho-kwang "Dave" Mao.

Their breakthrough research on the behavior nickel nanocrystals under intense pressure is published December 14 by Science. Their findings could help physicists and engineers create stronger, longer-lasting materials. It can also help earth scientists understand tectonic events and seismicity.

It is believed that permanent changes to metallic grains when under pressure are associated with the movement of structural irregularities in the grains, called dislocations.

But the deformation of nanocrystalline materials has been controversial because it was thought that below a certain grain size, the structural irregularities would not form and the deformation would be dictated by motions of the boundary between grains instead.

According to computer analysis, this critical limit would occur in nanocrystals at sizes between 10 and 30 nm in size.

Experimental work on nanocrystals under pressure has been limited by technical hurdles. But new capabilities using a technique called radial diamond anvil cell x-ray diffraction has opened the door to moving beyond computer modeling and into the lab.

The team, led by Bin Chen of the Lawrence Berkeley National Laboratory, was able to show that the activities of the structural irregularities that accompany deformation were occurring even in nickel nanocrystals of 3 nanometers in size when they were compressed to higher than 183,000 times normal atmospheric pressure (18.5 gigapascals).

This demonstrates that so-called dislocation-associated deformation is a function of both pressure and particle size, as previously thought, but that the particle size can be smaller than computer modeling had anticipated.

"These findings help constrain the fundamental physics of deformation under pressure on a very small scale," Mao said. "They also demonstrate the importance of the radial diamond anvil cell x-ray diffraction tool for helping us understand these processes."

.


Related Links
Carnegie Institution
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





TECH SPACE
Space-Age Ceramics Get Their Toughest Test
Berkeley CA (SPX) Dec 11, 2012
Advanced ceramic composites can withstand the ultrahigh operational temperatures projected for hypersonic jet and next generation gas turbine engines, but real-time analysis of the mechanical properties of these space-age materials at ultrahigh temperatures has been a challenge - until now. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkel ... read more


TECH SPACE
Apocalypse... but not as we know it

Great balls of China to defend against 'apocalypse'

Thirteen killed in S.Africa bridge collapse

Fire, flood or giant calabash... pick your apocalypse

TECH SPACE
Third Boeing GPS IIF Begins Operation After Early Handover to USAF

Putin Urges CIS Countries to Join Glonass

Third Galileo satellite begins transmitting navigation signal

Retired GIOVE-A satellite helps SSTL demonstrate first High Altitude GPS navigation fix

TECH SPACE
What howler monkeys can tell us about the role of interbreeding in human evolution

Africa's Homo sapiens were the first techies

Skeletons in cave reveal Mediterranean secrets

World's tallest woman dies in China: authorities

TECH SPACE
At high altitude, carbs are the fuel of choice

S.Africa offers cash rewards to curb poaching

Illegal wildlife trade threatens nations' security: WWF

China development threatens wildlife: WWF

TECH SPACE
Indonesia says it has found more virulent bird flu strain

Copper restricts the spread of global antibiotic-resistant infections

Why some strains of Lyme disease bacteria are common and others are not

More S.African pregnant women contracting HIV: study

TECH SPACE
China gives hijackers death sentences

US lawmakers, Chinese friends seek Liu Xiaobo release

Top China provincial leader sacked: Xinhua

Two Tibetans die in latest self-immolations

TECH SPACE
Four Chinese hostages freed in Colombia

Piracy will swell again if seas not policed: S.African Navy

Mekong River attackers get death sentences

West African pirates target oil tankers

TECH SPACE
China to boost domestic demand in 2013: state media

Israelis fear economic collapse more than Iran: study

Markets cheer Japan conservatives' return to power

Japanese manufacturers' confidence dives




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement