Medical and Hospital News  
TIME AND SPACE
Building compact particle accelerators
by Staff Writers
Washington DC (SPX) May 12, 2016


Researchers propose a new method to improve plasma wakefield accelerators by compressing the electron beam. Simulations show two-dimensional electron density distribution for the injector stage (A), compressor stage (B) and accelerator stage (C), where the target e-beam is circled by a dashed circle (in red). Image courtesy Jiansheng Liu and Chinese Academy of Sciences. For a larger version of this image please go here.

In the world of particle accelerators, laser wakefield devices are the small, but mighty upstarts. The machines can accelerate electrons to near the speed of light using a fraction of the distance required by conventional particle accelerators. However, the electrons are not all uniformly accelerated and beams with a mix of faster (higher energy) and slower (lower energy) particles are less practical.

Now a team of researchers from China, South Korea and the U.S. has proposed a new way to minimize the energy spread of electrons in laser wakefield accelerators. They publish their method in the journal Physics of Plasmas, from AIP Publishing.

Laser wakefield accelerators work by shooting an ultrafast laser pulse through a plasma. Plasmas contain positively charged ions and free electrons. As the laser plows through the plasma, it pushes the electrons out of the way, leaving behind a region of positively charged ions.

The positive charge pulls electrons back in behind the laser pulse in waves. These plasma waves in turn generate strong electric fields that trap electrons and can accelerate them to energy levels on the order of one billion electron volts, which means the electrons are zipping by at around 99.99999 percent the speed of light.

"Along the axis that the laser propagates, the longitudinal electric field resembles a very steep ocean wave about to break, which will cause electrons trapped near the rear to feel a very strong forward acceleration," said Jiansheng Liu, a physicist with the Chinese Academy of Sciences.

The acceleration is so strong that laser wakefield devices can boost electrons to ultra-high-energy levels in mere centimeters, a feat that would take the most advanced conventional accelerators many meters to accomplish.

However, there are downsides to laser wakefield accelerators. First, electrons may enter the plasma wave at different times and the electrons that enter first are accelerated for longer. Second, the acceleration is not uniform, so electrons at different locations receive different energy boosts. Both these factors contribute to an energy spread for the accelerated electrons - an undesirable feature for practical applications.

Liu and his colleagues propose a novel way to minimize the energy spread. After the electrons enter the plasma wave, but before they are accelerated, the team proposes inserting a plasma compressor. The compressor squeezes the electrons together and also flips their order, so that the fast electrons that were at the front of the pulse are now at the back.

When the shortened pulse is accelerated, the fast electrons at the back catch up to the slow electrons at the front, and the final pulse has a very small energy spread.

Previous efforts to minimize the energy spread by optimizing the electron injection process or shaping the acceleration field produced particles whose energy levels varied by several percentage points. The new scheme should be able to reduce the energy spread to the one-thousandth level, more than 10 times better.

A one-thousandth-level or lower energy spread would make new applications for laser wakefield accelerators possible, including a highly desirable table-top X-ray free-electron laser, Liu said.

X-ray free-electron lasers generate flashes of X-ray light short and intense enough to make movies of chemical reactions and other ultrafast phenomena, but the electrons must have a very tight energy spread to generate the coherent X-rays necessary for a clear picture. Current X-ray free-electron lasers are huge machines housed at national facilities like SLAC, the national accelerator laboratory in Menlo Park, California.

Liu and his colleagues are currently working on plans to test their proposed method by building a device in the lab.

Research paper: "Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
One minus 1 does not always equal 0 in chemistry
Chicago IL (SPX) May 03, 2016
In the world of chemistry, one minus one almost always equals zero. But new research from Northwestern University and the Centre National de la Recherche Scientifique (CNRS) in France shows that is not always the case. And the discovery will change scientists' understanding of mirror-image molecules and their optical activity. In 1848, Louis Pasteur showed that molecules that are mirror im ... read more


TIME AND SPACE
Belgian prisons 'like North Korea' as strike crisis hits

Rush on pillows at Canada evacuation center

Tensions simmer at Canada fire evacuee centers

Haiti preparing for major earthquake, tsunami

TIME AND SPACE
Galileo satellites fuelled for flight

Satellites 11 and 12 join working Galileo fleet

Operation of 'Indian GPS' will take some more time: ISRO

Air Force awards GPS 3 launch services contract

TIME AND SPACE
Drawing the genetic history of Ice Age Eurasian populations

Hominins may have been food for carnivores 500,000 years ago

Neandertals and Upper Paleolithic Homo sapiens had different dietary strategies

Chimp study explores the early origins of human hand dexterity

TIME AND SPACE
Exploiting male killing bacteria to control insects

Stickleback fish adapt their vision in the blink of an eye

Legal culling of wolves increases poaching: study

Pond scum and the gene pool

TIME AND SPACE
NASA Helps Forecast Zika Risk

Cellphone-sized device quickly detects the Ebola virus

Threat of novel swine flu viruses in pigs and humans

TGen tracks the origins and spread of potentially deadly Valley Fever

TIME AND SPACE
'Flesh banquets' of China's Cultural Revolution remain unspoken, 50 years on

China court jails pro-democracy activists: lawyer

China sends more anti-graft inspectors into military

China slams UN criticism of controls on foreign NGOs

TIME AND SPACE
Indonesia frees vessel captured by suspected pirates: navy

Founder of online underworld bank gets 20 years in prison

Colombia authorizes air strikes against criminal gangs

New force raids El Salvador gang districts

TIME AND SPACE
China producer price falls slow in April: govt

Top China paper warns of crisis risk over debt

China national rail company owes more than Greece: report

Multinationals book more income in Bermuda than China: UN









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.