Free Newsletters - Space - Defense - Environment - Energy
..
. Medical and Hospital News .




ENERGY TECH
Can bacteria combat oil spill disasters?
by Staff Writers
Leipzig, Germany (SPX) Oct 01, 2013


This shows fire boats battle blazing remnants of the Deepwater Horizon rig the day after it exploded on April 2010. Credit: Photo: US Coast Guard.

Teams of international scientists have decrypted the effectiveness of two types of bacteria, which could be used in the future to help combat oil spill disasters.

According to a report written by scientists from the Helmholtz Centre for Environmental Research and the Helmholtz Centre for Infection Research in the peer-reviewed journal Applied and Environmental Microbiology, Alcanivorax borkumensis converts hydrocarbons into fatty acids which then form along the cell membrane.

New insights on the bacteria Oleispira antarctica are important to understand their adaptation to low temperatures and could help in mitigation strategies for oil spills in polar seas or the deep sea, according to comments made by an international team in the peer-reviewed journal Nature Communications

Until now, chemicals have often been used to clean up oil disasters, to break up the oil/water emulsion, making oil more soluble and thus removing it from the surface water.

According to data from the US Environmental Protection Agency (EPA) around seven million litres of such chemicals were used to combat oil pollution in the Gulf of Mexico, resulting from a spill of about 700,000 tons of crude oil into the sea from the offshore oil drilling platform "Deepwater Horizon" in 2010.

Some of the most well-known of these were dispersants with the brand name Corexit - developed following the notorious tanker accident of the Exxon Valdez in Alaska in 1989. These substances have been heavily criticised however because of their side effects on humans and the environment. In the context of the EU-project BACSIN, scientists from different countries have therefore been investigating alternatives.

"One approach for example could be to stimulate oil-degrading bacteria in their growth or for example by making them easier to use by freeze-drying so that they can be sprayed more easily than powders over the oil slick", explains Dr. Hermann J. Heipieper from the UFZ.

"However, there are still lots of details that require fine-tuning before the day arrives when they can be used to combat damage from oil spills. The precautionary principle should therefore be given priority. No matter how concerted efforts are, nature will never completely return to its original state, not to mention the fact that the mitigation of environmental damage from oil spills is much more costly than its prevention."

Oil-degrading bacteria are not a human invention. In fact, they have been around for millions of years. The only thing that is new is the quantity of oil being spilt in the sea from oil disasters.

Therefore, science has been looking into novel ways to accelerate natural degradation processes. One focus has been on hydrocarbon-degrading bacteria - so-called marine obligate hydrocarbonoclastic bacteria.

These specialists at degrading hydrocarbons in marine ecosystems are able to degrade aliphatic hydrocarbons and use them as a source of energy. These bacteria are common in sea water all over the world, even if only in small quantities.

If they come into contact with crude oil, then their population increases exponentially. A kind of bloom is formed, similar to those that we are familiar with from marine algae blooms. And yet, in spite of their important ecological meaning, still relatively little is known about the processes taking place in the cells of these bacteria.

Headed by Dr. Hermann J. Heipieper, researchers from the UFZ have therefore been conducting detailed physiological and genomic analyses of the two reference strains of this group of bacteria (Alcanivorax borkumensis and Oleispira antarctica) that is tremendously versatile.

This can be seen in particular by changes to the cell surface, by the way in which biologically oxidized aliphatic hydrocarbons are built into the cell membranes and by the regulation of genes to adapt to environmental stress.

Alcanivorax borkumensis is a marine bacterium, owing its name to the place where it was discovered - the island of Borkum (in spite of its worldwide distribution). It is considered to be one of the most important organisms with the ability to degrade oil spills in marine systems.

Nevertheless, up until now there had been a lack of information on the growth and physiology of these bacteria in relation to hydrocarbons with different chain lengths. The recent investigations found that the bacterium were particularly effective at processing alkanes with carbon chain lengths of between 12 and 19 carbon atoms. "The cell growth confirmed that this bacterium is not only able to take up the intermediates of fatty acids in its own body but also to convert them", explains Heipieper.

By contrast, for the significantly colder polar seas or the deep sea Oleispira would be the more suitable bacterium. It can survive at temperatures around 5 degrees Celsius that are typical for example on the seabed of the Gulf of Mexico. With eleven protein crystal structures it has the largest quantity of structures under the cold-loving microorganisms and it clearly has more negative charges at the surface than microorganisms in moderate temperatures.

Even if most of the enzymes of this bacterium no longer work optimally under cold weather conditions, they still work sufficiently to accelerate growth and outdo other competitors, if a hydrocarbon diet from crude oil suddenly becomes available.

The persistence of these bacteria is proof of their ecological competitiveness in cold environments, therefore making them good candidates for the development of biotechnological solutions for oil pollution mitigation in polar regions. The new insights about the two bacteria are a small, but important step forward in the search for alternatives to the toxic dispersants that have been used so far.

Naether D.J., Slawtschew S., Stasik S., Engel M., Olzog M., Wick L.Y., Timmis K.N., Heipieper H.J. (2013): Adaptation of hydrocarbonoclastic Alcanivorax borkumensis SK2 to alkanes and toxic organic compounds - a physiological and transcriptomic approach. Appl. Environ. Microbiol. 79:4282-4293, in press. doi: 10.1128/AEM.00694-13. The study was funded by the European Commission in the context of the EU-project BACSIN. Kube M., Chernikova T.N., Al-Ramahi Y., Beloqui A., Lopez-Cortez N., Guazzaroni M.E., Heipieper H.J., Klages S., Kotsyrbenko O.R., Langer I., Nechitaylo T.Y., Lunsdorf H., Fernandez M., Juarez S., Ciordia S., Singer S., Kagan O., Egorova O., Petit P.A., Stogios P., Kim Y., Tchigvintsev A., Flick R., Denaro R., Genovese M., Albar J.P., Reva O.N., Martinez-Gomariz M., Tran H., Ferrer M., Savchenko A., Yakunin A.F., Yakimov M.M., Golyshina O.V., Reinhardt R., Golyshin P.N. (2013): Functional genome analysis of Oleispira antarctica RB-8, a key oil-degrading bacterium in cold and deep marine environments. Nature Communications 4:2156, 23 July 2013. doi:10.1038/ncomms3156.

.


Related Links
Helmholtz Centre for Environmental Research - UFZ
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News



International Conference on Protection of Materials and Structures From Space Environment



ENERGY TECH
China's synthetic gas plants would be greenhouse giants
Durham NC (SPX) Oct 01, 2013
Coal-powered synthetic natural gas plants being planned in China would produce seven times more greenhouse gas emissions than conventional natural gas plants, and use up to 100 times the water as shale gas production, according to a new study by Duke University researchers. These environmental costs have been largely neglected in the drive to meet the nation's growing energy needs, the res ... read more


ENERGY TECH
China launches satellite to monitor natural disaster

Australia and Indonesia hold conciliatory discussions

FBI releases chilling video of navy yard shooter

Storm-stricken Acapulco hit by new floods

ENERGY TECH
Astrium down selected for MOJ electronic tagging contract

Lockheed Martin GPS 3 Satellite Prototype Integrated With Raytheon OCX Ground Control Segment

China's navi-location industries to boom: white paper

OHN Christner Trucking Selects Orbcomm For Refrigerated Telematics Solution

ENERGY TECH
Roma families face wholesale expulsion from France

Genetic study pushes back timeline for first significant human population expansion

Your brain digitally remastered for clarity of thought

Findings in Middle East suggest early human routes into Europe

ENERGY TECH
Tick tock: Marine animals with at least two clocks

Europe's bison, beavers and bears bounce back: report

Global partnership formed to save African elephants in protected areas

Study finds 'microbial clock' may help determine time of death

ENERGY TECH
Projected climate change in West Africa not likely to worsen malaria situation

HIV infections plummet since 2001: UN

Disarming HIV With a "Pop"

AIDS epidemic's end by 2030 seen: UN official

ENERGY TECH
Hong Kong implements official benchmark on poverty

China web users' scathing critique of giant Tiananmen vase

China Tiananmen Square makeover meets cost complaints

Nearly 9 in 10 kids in China know cigarette logos: study

ENERGY TECH
ENERGY TECH
Japan leader set to announce crucial sales tax hike

China manufacturing expands in September: HSBC

US Fed probing market trades before policy release

China house price increases gain speed in September: survey




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement