Medical and Hospital News  
STELLAR CHEMISTRY
Carina Nebula Blasted by Brilliant Nearby Stars
by Staff Writers
Garching, Germany (SPX) Nov 04, 2016


These composite image shows several pillars within the Carina Nebula which were observed and studied with the MUSE instrument, mounted on ESO's Very Large Telescope. The massive stars within the star formation region slowly destroy the pillars of dust and gas from which they are born. Image courtesy ESO/A. McLeod. For a larger version of this image please go here.

Spectacular new observations of vast pillar-like structures within the Carina Nebula have been made using the MUSE instrument on ESO's Very Large Telescope. The different pillars analysed by an international team seem to be pillars of destruction - in contrast to the name of the iconic Pillars of Creation in the Eagle Nebula, which are of similar nature.

The spires and pillars in the new images of the Carina Nebula are vast clouds of dust and gas within a hub of star formation about 7,500 light-years away. The pillars in the nebula were observed by a team led by Anna McLeod, a PhD student at ESO, using the MUSE instrument on ESO's Very Large Telescope.

The great power of MUSE is that it creates thousands of images of the nebula at the same time, each at a different wavelength of light. This allows astronomers to map out the chemical and physical properties of the material at different points in the nebula.

Images of similar structures, the famous Pillars of Creation in the Eagle Nebula and formations in NGC 3603, were combined with the ones displayed here. In total ten pillars have been observed, and in so doing a clear link was observed between the radiation emitted by nearby massive stars and the features of the pillars themselves.

In an ironic twist, one of the first consequences of the formation of a massive star is that it starts to destroy the cloud from which it was born. The idea that massive stars will have a considerable effect on their surroundings is not new: such stars are known to blast out vast quantities of powerful, ionising radiation - emission with enough energy to strip atoms of their orbiting electrons. However, it is very difficult to obtain observational evidence of the interplay between such stars and their surroundings.

The team analysed the effect of this energetic radiation on the pillars: a process known as photoevaporation, when gas is ionised and then disperses away.

By observing the results of photoevaporation - which included the loss of mass from the pillars - they were able to deduce the culprits. There was a clear correlation between the amount of ionising radiation being emitted by nearby stars, and the dissipation of the pillars.

This might seem like a cosmic calamity, with massive stars turning on their own creators. However the complexities of the feedback mechanisms between the stars and the pillars are poorly understood.

These pillars might look dense, but the clouds of dust and gas which make up nebulae are actually very diffuse. It is possible that the radiation and stellar winds from massive stars actually help create denser spots within the pillars, which can then form stars.

These breathtaking celestial structures have more to tell us, and MUSE is an ideal instrument to probe them with.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ESO
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Lithium mostly comes from supernovas
Granada, Spain (SPX) Nov 04, 2016
Lithium, the lightest solid element in existence, plays an important role in our lives, both at the biological and the technological level. Like the majority of chemical elements, its origins stem back to astrophysical phenomena, but its point of genesis was so far unclear. Recently, a group of researchers detected enormous quantities of beryllium-7 -an unstable element which decays into lithium ... read more


STELLAR CHEMISTRY
Italy quake zones fear tourism collapse as displaced total rises

Colombian president 'inspired' by N. Irish peace process

Lottery of misery: Bleak choices for North Korea's women

Aid workers 'brace for worst' from Mosul battle

STELLAR CHEMISTRY
Swarm reveals why satellites lose track

Satellites to spot drones and guide cyclists

No GPS, no problem: Next-generation navigation

Australia's coordinates out by more than 1.5 metres: scientist

STELLAR CHEMISTRY
Ancient human history more complex than previously thought

Europeans and Africans have different immune systems, and neanderthals are partly to thank

Study finds earliest evidence in fossil record for right-handedness

Extensive heat treatment in Middle Stone Age silcrete tool production in South Africa

STELLAR CHEMISTRY
Research into extreme weather effects may explain recent butterfly decline

Colorado River's dead clams tell tales of carbon emission

Fossils reveal approaching relocation of plants on Earth

Video of world's 'saddest polar bear' in China sparks outrage

STELLAR CHEMISTRY
Not 'patient zero': the origins of US AIDS epidemic

Driving mosquito evolution to fight malaria

Tobacco plants engineered to manufacture high yields of malaria drug

Haiti sees 800 new cholera cases after hurricane

STELLAR CHEMISTRY
Hong Kong rebel lawmakers in court over oath battle

China priests' fears over Vatican's Beijing olive branch

Pro-independence lawmakers brawl in Hong Kong parliament

Shedding light on China's dark-sky problem

STELLAR CHEMISTRY
African leaders tackle piracy, illegal fishing at Lome summit

US to deport ex-navy chief drug trafficker to Guinea-Bissau

Gunmen ambush Mexican military convoy, kill 5 soldiers

Mexican army to probe killings of six in their home

STELLAR CHEMISTRY
Property and credit booms stablise China growth

China data and US banks propel equities higher

No debt-for-equity cure for zombie firms, says China

China's ranks of super-rich rise despite economic slowdown









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.