Medical and Hospital News  
ENERGY TECH
Clarifying the role of magnetism in high-temperature superconductors
by Staff Writers
Tokyo, Japan (SPX) Jan 29, 2016


The sample was gently squeezed in a copper holder to insure a uniform alignment at low temperature.

A collaboration of scientists from the RIKEN SPring-8 Center, Osaka University, the Japan Atomic Energy Agency, and the Japan Synchrotron Radiation Research Institute have published research clarifying the role of magnetism in a new type of high-temperature superconductor.

The research, just published as a Rapid Communication in Physical Review B, gives us a better understanding of the atomic-scale behavior of these materials. Physicists hope that, by understanding how these materials superconduct at relatively high temperature, they can eventually learn enough to make materials that superconduct close to room temperature.

It is known that the phenomenon of superconductivity - where materials conduct electricity without resistance - arises when pairs of electrons become coupled together or "paired". With traditional superconductors, this pairing arises due to vibrations of the ions in the structure. But this is not always the case: there are other types of materials, such as cuprate superconductors and a relatively new class of superconductor iron-pnictide superconductors, that was discovered by a group led by Hideo Hosono at the Tokyo Institute of Technology, where magnetism may be the paring mechanism.

According to Alfred Baron, the leader of the Materials Dynamics Lab at RIKEN SPring-8 Center, "The question we addressed was how the atomic vibrations in the iron pnictides are affected by magnetism.

This was especially interesting because atomic vibrations are understood to be driving force of the older type of low-temperature superconductors, while magnetism is considered to be the probable driving mechanism of the new, high-temperature, superconductivity. Thus, it was in some sense, an overlap of the old with the new."

Using a technique called inelastic x-ray scattering on two beamlines of the powerful SPring-8 synchrotron facility in Harima, Japan, the group was able to measure the dynamics in specially prepared single-domain samples. Comparing their measurements to calculations then suggested that magnetic fluctuations play an important role in the atomic vibrations. Naoki Murai, the graduate student spearheading the measurement explains,

"By very gently pressing the material in the correct direction we were able to observe effects due to the onset of magnetic order". Says Baron, "One of the nice things about this work is that it provides a basis for describing atomic vibrations in this whole class of materials--do calculations with magnetism and then add fluctuations".

Baron says the collaboration will continue to investigate the properties of these fascinating materials, and also, more generally, the interaction of magnetism and atomic vibrations.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
RIKEN
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Creation of Jupiter interior, a step towards room temp superconductivity
Osaka, Japan (SPX) Dec 21, 2015
Hydrogen is the most abundant element in the universe, and a major component of stars such as the Sun, as well as gas-giant planets such as Jupiter and Saturn. In recent years, hydrogen's behavior at high temperature and high pressure has been in the realm of interest not only for planetary science, but also for fields such as materials science for the purpose of achieving a hydrogen energy soci ... read more


ENERGY TECH
China pushes inferno documentary into purgatory

Charities warn of 'desperate' plight of refugees in snow

Nepal quake rebuilding to take years, new chief says

MH370 search finds new shipwreck, but no plane

ENERGY TECH
PSLV launches India's 5th navigation satellite

Trimble to provide GPS survey systems for U.S. Marines

SMC releases RFP for GPS III Space Vehicles

GPS vultures swoop down on illegal dumps in Peru

ENERGY TECH
The indications of a new geological epoch marked by human impact are clear

Why are habits so hard to break

Evidence of a prehistoric massacre extends the history of warfare

Dartmouth study helps fill in gaps in our visual perception

ENERGY TECH
Study: Bigger animal brains enable better problem solving

Finland begins controversial wolf hunt

Hunting secrets of the Venus flytrap

Newly discovered photosynthetic bacteria is surprisingly abundant

ENERGY TECH
11 swine flu deaths in Syria since September: health ministry

US Army probe blames leadership in anthrax shipment scandal

Ebola epidemic is over but expect flare-ups: UN

Experimental immunotherapy zaps 2 most lethal Ebola virus strains

ENERGY TECH
China releases Swedish rights activist: Stockholm

Missing bookseller met wife in China: HK police

'Corrupt' Chinese officials seized nearly $1 bn: analysis

Sanction Chinese state media: advocacy group

ENERGY TECH
Two Mexican marines, suspect killed in shootout

U.S., U.K. help build West African partners' anti-piracy capabilities

ENERGY TECH
China pours $67 bn into financial system before holiday

China state media accuse Soros of 'declaring war' on yuan

IMF's Lagarde says China slowdown 'normal' but bumps ahead

Slowing growth and jihadist threat worry the elite at Davos









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.