. Medical and Hospital News .




.
TECH SPACE
Clemson researchers make optical fibers from common materials
by Staff Writers
Clemson SC (SPX) Aug 15, 2012

File image

Clemson researchers are taking common materials to uncommon places by transforming easily obtainable and affordable materials into fiber. Their findings are published in Nature Photonics, the world's top journal focused on light-based technologies. "We have used a highly purified version of beach sand (silica) for fiber for the last 40 years," said John Ballato, director of the Center for Optical Materials Science and Engineering Technologies at Clemson University.

"As a matter of fact, the 2009 Nobel Prize in Physics was awarded for the development of silica optical fibers. However, while silica has done remarkably well over time, it is now being pushed to its limits for faster and cheaper data and new functionality."

It has gotten to the point where there is so much light packed in fiber cable that the silica material essentially can't handle the intensity and has actually begun interacting and rebelling.

"At high power, the light causes the atoms of the material to vibrate more violently and those vibrations convert some of the light energy into sound energy which restricts the ability of the fiber to carry more power," said Ballato.

"This, in turn, lessens the amount of light that can travel through the fiber, which limits the amount of information that can be sent for telecommunications uses and power for high-energy laser applications,"

The demand for stronger and more durable fiber material is greater than ever and will only increase with technological advancement. Clemson researchers are focusing on providing a material solution for fiber optics, especially one that can be sold commercially.

Their goal is to take a robust, affordable, and easily accessible material that can take the brunt of greater intensity and convert that material into a fiber.

Ballato and his team found that sapphire possesses extraordinary properties that make it exceptionally valuable for high power lasers in which the light intensity interacts with sound waves in the glass and leads to diminished power-handling capabilities.

"Sapphire is new and different in this sense because we're able to use a low-cost and widely used commodity as a fiber," said Ballato. "Sapphire is scalable, acceptable and is a material that people don't think about when it comes to fiber optics. The problem is that sapphire's crystalline structure is not amenable to making into optical fiber using commercially accepted methods."

Ballato actually developed the sapphire fiber to withstand greater intensity and be more useful for high-energy applications than typical commercial fibers.

"Ballato's recent results with sapphire fibers represent a paradigm-shifting development in the field of fiber optics," said Siddarth Ramachandran, associate professor in the electrical and computer engineering at Boston University and an expert in the field.

"Materials long considered to be used only in the realm of free-space optics can now be exploited in fiber geometries, which enable long interaction lengths and novel nonlinear optical effects."

"This research is paving the way for everyday commodities to be imagined for technological uses such as fiber optics," Ballato said. "We're performing additional studies with sapphire and other materials that have similar effects for fiber."

Related Links
Clemson University
Space Technology News - Applications and Research




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



TECH SPACE
Reluctant electrons enable 'extraordinarily strong' negative refraction
Boston MA (SPX) Aug 09, 2012
In a vacuum, light travels so fast that it would circle the Earth more than seven times within the blink of an eye. When light propagates through matter, however, it slows by a factor typically less than 5. This factor, called the refractive index, is positive in naturally occurring materials, and it causes light to bend in a particular direction when it shines on, for example, water or glass. ... read more


TECH SPACE
Fukushima caused mutant butterflies: scientists

Retreat never an option: ex-Fukushima chief

Urban disasters spotlight strain on Asian cities

Armageddon looming? Tell Bruce Willis not to bother

TECH SPACE
Next Galileo satellite reaches French Guiana launch site

Raytheon completes GPS OCX iteration 1.4 Critical Design Review

Mission accomplished, GIOVE-B heads into deserved retirement

Boeing Ships 3rd GPS IIF Satellite to Cape Canaveral for Launch

TECH SPACE
Early human ancestors had more variable diet

Researchers develop new physical face cloning method

It's in our genes: Why women outlive men

Later Stone Age got earlier start in South Africa than thought

TECH SPACE
North American freshwater fishes race to extinction

Physics and math shed new light on biology by mapping the landscape of evolution

Division of labor offers insight into the evolution of multicellular life

Can nature parks save biodiversity?

TECH SPACE
Mexico destroys 8 mn chickens amid bird flu outbreak

Clinton signs new deal to fight AIDS in South Africa

Malawi to test 250,000 people for HIV in one week

New bat virus could hold key to Hendra virus

TECH SPACE
Tibetan sets himself alight in China: group

Workshop blast in east China kills 13

China's passion for fashion catapults blogger to stardom

China accuses US of prejudice on religious issues

TECH SPACE
Nigeria intensifies search for 4 kidnapped foreigners: navy

Somali pirates release Taiwan fishing boat

ONR Sensor and Software Suite Hunts Down More Than 600 Suspect Boats

Netherlands beefs up anti-piracy forces

TECH SPACE
Wen sees China meeting growth target: Xinhua

Argentina plans $750M YPF bond issue

Asian economies most at risk from natural disasters

More China loosening tipped as output, inflation ease


Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement