Medical and Hospital News  
SOLAR DAILY
Closing in on state-of-the-art semiconductor solar cells
by Staff Writers
Thuwal, Saudi Arabia (SPX) May 07, 2021

stock image only

A synthetic approach that improves absorber layers in perovskite solar cells could help them achieve their full potential and draw closer to the performance of leading gallium arsenide devices.

Solar cells that rely on perovskite thin films to capture sunlight are the fastest growing photovoltaic technology. Cheaper and easier to manufacture and incorporate into devices than conventional semiconductors, lead halide perovskites also effectively absorb visible light and display long charge carrier diffusion lengths - an indicator of their ability to maintain light-induced electrons and holes separation and facilitate charge transport.

Performance of solar cells hinges on absorber materials with a high-quality crystal structure and a narrow bandgap to maximize sunlight harvesting. This optimal bandgap range spans energies of 1.1 to 1.4 eV, which corresponds to near-infrared wavelengths.

Absorber layers containing polycrystalline lead halide perovskites have provided high-efficiency solar cells. Their performance, however, has been affected by considerable structural disorder and defects. Formamidinium lead triiodide features the smallest bandgap to date, but this bandgap exceeds the optimal range for single-junction devices. One way to reduce the bandgap of perovskites involves forming lead-tin alloys in the absorber, but this introduces crystal defects and instability.

Now, a team from KAUST has developed an approach using a microns-thick absorber layer consisting of perovskite single crystals to minimize the bandgap. The crystals contain a mixture of methylammonium and formamidinium organic cations.

The researchers incorporated the mixed-cation perovskite into unconventional inverted p-i-n solar cells, in which the absorber is sandwiched between an electron transport top layer and a hole transport bottom layer. The resulting solar cells exhibited an efficiency of 22.8 percent, surpassing the best-performing devices using single-crystal methylammonium lead triiodide.

"We had known that mixed-cation single-crystal absorbers could outperform single-cation absorbers due to their lower bandgap and superior optoelectronic qualities. However, this had not been realized before because of challenges in crystal growth and device integration," says Abdullah Alsalloum, a Ph.D. student in Osman Bakr's group.

The external quantum efficiency of the mixed-cation perovskite film, which measures its effectiveness when converting incoming light into charge carriers, shifted toward near-infrared wavelengths from that of polycrystalline formamidinium lead triiodide, consistent with its smaller bandgap. "By utilizing a thicker single-crystal absorber layer, we expanded the absorption range of the film so that it's very close to the optimal range," Alsalloum says.

The team is working on enhancing device performance and stability to get even closer to the top-performing gallium arsenide solar cells. "Future studies include optimizing device interfaces and exploring more favorable device structures," Alsalloum adds.

Research paper


Related Links
King Abdullah University Of Science and Technology
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
'Molecular glue' makes perovskite solar cells dramatically more reliable over time
Providence RI (SPX) May 07, 2021
A research team from Brown University has made a major step toward improving the long-term reliability of perovskite solar cells, an emerging clean energy technology. In a study to be published on Friday, May 7 in the journal Science, the team demonstrates a "molecular glue" that keeps a key interface inside cells from degrading. The treatment dramatically increases cells' stability and reliability over time, while also improving the efficiency with which they convert sunlight into electricity. "T ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Over 600 Europe-bound migrants returned to Libya: navy

Utah's new concealed carry law won't apply at Hill AFB, Air Force says

Humanity taking 'colossal risk' with our future: Nobels

Fires a chronic threat to Iraqi lives, property

SOLAR DAILY
GPS tracking could help tigers and traffic coexist in Asia

US Army Geospatial Center Upgrades OGC Membership to Advance Open Systems

MyGalileoSolution and MyGalileoDrone: A word from the winners

Google Maps to show more eco-friendly routes

SOLAR DAILY
Dunbar's number debunked: You can have more than 150 friends

Circadian rhythm-controlling 'clock genes' could be tweaked to alter sleep

Prehistoric humans first traversed Australia by 'superhighways'

Model shows first Australians travelled on 'superhighways'

SOLAR DAILY
For animals, inbreeding isn't all that bad, new research shows

Humans significantly altered biodiversity on islands, study shows

Gorilla among 200 endangered species threatened by conflict: conservationists

Madagascar's horned crocodile warrants a new branch on the tree of life

SOLAR DAILY
EMA opens review of China's Sinovac coronavirus jab

India infections top 20 million but numbers offer slight hope

Chinese tourists out in force as virus fears recede

Philippines' Duterte gets Chinese-made Covid-19 vaccine

SOLAR DAILY
Chinese university campus plan meets resistance in Budapest

Kissinger warns of 'colossal' dangers in US-China tensions

Hong Kong passes immigration bill with 'exit ban' powers

'Blind box' craze grips China's youth and mints toymakers a fortune

SOLAR DAILY
Crew of Chinese boat freed from kidnappers: Nigerian army

USS Winston Churchill crews seize illegal weapons off coast of Somalia

Jade and rubies: how Myanmar's military amassed its fortune

SOLAR DAILY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.