Medical and Hospital News
CHIP TECH
Combining materials may support unique superconductivity for quantum computing
SPX stock illustration only
Combining materials may support unique superconductivity for quantum computing
by Staff Writers
University Park PA (SPX) Feb 12, 2024

A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing. The new combination of materials, created by a team led by researchers at Penn State, could also provide a platform to explore physical behaviors similar to those of mysterious, theoretical particles known as chiral Majoranas, which could be another promising component for quantum computing.

The new study appeared online in the journal Science. The work describes how the researchers combined the two magnetic materials in what they called a critical step toward realizing the emergent interfacial superconductivity, which they are currently working toward.

Superconductors - materials with no electrical resistance - are widely used in digital circuits, the powerful magnets in magnetic resonance imaging (MRI) and particle accelerators, and other technology where maximizing the flow of electricity is crucial. When superconductors are combined with materials called magnetic topological insulators - thin films only a few atoms thick that have been made magnetic and restrict the movement of electrons to their edges - the novel electrical properties of each component work together to produce "chiral topological superconductors." The topology, or specialized geometries and symmetries of matter, generates unique electrical phenomena in the superconductor, which could facilitate the construction of topological quantum computers.

Quantum computers have the potential to perform complex calculations in a fraction of the time it takes traditional computers because, unlike traditional computers which store data as a one or a zero, the quantum bits of quantum computers store data simultaneously in a range of possible states. Topological quantum computers further improve upon quantum computing by taking advantage of how electrical properties are organized to make the computers robust to decoherence, or the loss of information that happens when a quantum system is not perfectly isolated.

"Creating chiral topological superconductors is an important step toward topological quantum computation that could be scaled up for broad use," said Cui-Zu Chang, Henry W. Knerr Early Career Professor and associate professor of physics at Penn State and co-corresponding author of the paper. "Chiral topological superconductivity requires three ingredients: superconductivity, ferromagnetism and a property called topological order. In this study, we produced a system with all three of these properties."

The researchers used a technique called molecular beam epitaxy to stack together a topological insulator that has been made magnetic and an iron chalcogenide (FeTe), a promising transition metal for harnessing superconductivity. The topological insulator is a ferromagnet - a type of magnet whose electrons spin the same way - while FeTe is an antiferromagnet, whose electrons spin in alternating directions. The researchers used a variety of imaging techniques and other methods to characterize the structure and electrical properties of the resulting combined material and confirmed the presence of all three critical components of chiral topological superconductivity at the interface between the materials.

Prior work in the field has focused on combining superconductors and nonmagnetic topological insulators. According to the researchers, adding in the ferromagnet has been particularly challenging.

"Normally, superconductivity and ferromagnetism compete with each other, so it is rare to find robust superconductivity in a ferromagnetic material system," said Chao-Xing Liu, professor of physics at Penn State and co-corresponding author of the paper. "But the superconductivity in this system is actually very robust against the ferromagnetism. You would need a very strong magnetic field to remove the superconductivity."

The research team is still exploring why superconductivity and ferromagnetism coexist in this system.

"It's actually quite interesting because we have two magnetic materials that are non-superconducting, but we put them together and the interface between these two compounds produces very robust superconductivity," Chang said. "Iron chalcogenide is antiferromagnetic, and we anticipate its antiferromagnetic property is weakened around the interface to give rise to the emergent superconductivity, but we need more experiments and theoretical work to verify if this is true and to clarify the superconducting mechanism."

The researchers said they believe this system will be useful in the search for material systems that exhibit similar behaviors as Majorana particles - theoretical subatomic particles first hypothesized in 1937. Majorana particles act as their own antiparticle, a unique property that could potentially allow them to be used as quantum bits in quantum computers.

"Providing experimental evidence for the existence of chiral Majorana will be a critical step in the creation of a topological quantum computer," Chang said. "Our field has had a rocky past in trying to find these elusive particles, but we think this is a promising platform for exploring Majorana physics."

Research Report:Interface-induced superconductivity in magnetic topological insulators

Related Links
Penn State
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
Magnesium protects tantalum, a promising material for making qubits
Upton NY (SPX) Feb 12, 2024
Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. As described in a paper just published in the journal Advanced Materials, a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may ... read more

CHIP TECH
Ancient Antioch turns into container city year after quake

Global turbulence the 'new normal': EU's von der Leyen

Libya needs $1.8 bn to rebuild flood-devastated areas: report

Fukushima operator reports leak, says no contamination detected

CHIP TECH
APG Launches NaviGuard: A New GPS Anomaly Detection App Enhancing Aviation Safety

Korea's satnav system certified by national authorities and enters operational service

Pre-Industrial travel routes and times uncovered through innovative digital project

BAE Systems nears completion of next-gen military GPS user equipment

CHIP TECH
US patient 'happy again' after brain implant treats epilepsy and OCD

App lets Indigenous Brazilians connect in own languages

Activists decry Tibet 'cultural genocide' ahead of China rights review

Woolly mammoth movements tied to earliest Alaska hunting camps

CHIP TECH
How an invasive ant caused lions to change their diet

Poland's 'Bat-mum' saving bats from climate change

Authorities kill 'dangerous' bear in Italian Alps

Mexico sees big fall in monarch butterfly numbers

CHIP TECH
Malaria jab rollout in Cameroon a 'turning point': Gavi

Chinese laud 'great' Gao Yaojie, dissident doctor and AIDS whistleblower

Cholera claims 23 lives in Ethiopia: charity

Climate change could upturn world malaria fight: WHO

CHIP TECH
Hong Kong to allow recognition of some China court rulings

AI game trains young Chinese to face nosy relatives at New Year

Chinese endure New Year travel rush for a taste of home

Exiled Hong Kong activist Ted Hui handed bankruptcy order

CHIP TECH
Indian navy frees Iranian fishing boat hijacked off Somalia

U.S. blacklists Ecuadoran gang, leader who escaped from prison

Indian navy rescues 19 crew after Somali pirate hijack

Indian navy rescues Iranian fishing boat hijacked by Somali pirates

CHIP TECH
Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.