Medical and Hospital News  
STELLAR CHEMISTRY
Cosmic rays help supernovae explosions pack a bigger punch
by Staff Writers
London, UK (SPX) Jul 20, 2021

False colour image of one of the supernova simulations showing hot and cold patches of gas (white/green) in the bubble and the filamentary structure of cosmic rays (blue) around the shell of the supernova remnant.

The final stage of cataclysmic explosions of dying massive stars, called supernovae, could pack an up to six times bigger punch on the surrounding interstellar gas with the help of cosmic rays, according to a new study led by researchers at the University of Oxford. The work will be presented by PhD student Francisco Rodriguez Montero today (19 July) at the virtual National Astronomy Meeting (NAM 2021).

When supernovae explode, they emit light and billions of particles into space. While the light can freely reach us, particles become trapped in spiral loops by magnetic shockwaves generated during the explosions. Crossing back and forth through shock fronts, these particles are accelerated almost to the speed of light and, on escaping the supernovae, are thought to be the source of the mysterious form of radiation known as cosmic rays.

Due to their immense speed, cosmic rays experience strong relativistic effects, effectively losing less energy than regular matter and allowing them to travel great distances through a galaxy. Along the way, they affect the energy and structure of interstellar gas in their path and may play a crucial role in shutting down the formation of new stars in dense pockets of gas. However, to date, the influence of cosmic rays in galaxy evolution has not been well understood.

In the first high-resolution numerical study of its kind, the team ran simulations of the evolution of the shockwaves emanating from supernovae explosions over several million years. They found that cosmic rays can play a critical role in the final stages of a supernova's evolution and its ability to inject energy into the galactic gas that surrounds it.

Rodriguez Montero explains: "Initially, the addition of cosmic rays does not appear to change how the explosion evolves. Nevertheless, when the supernova reaches the stage in which it cannot gain more momentum from the conversion of the supernova's thermal energy to kinetic energy, we found that cosmic rays can give an extra push to the gas, allowing for the final momentum imparted to be up to 4-6 times higher than previously predicted."

The results suggest that gas outflows driven from the interstellar medium into the surrounding tenuous gas, or circumgalactic medium, will be dramatically more massive than previously estimated.

Contrary to state-of-the-art theoretical arguments, the simulations also suggest that the extra push provided by cosmic rays is more significant when massive stars explode in low-density environments. This could facilitate the creation of super-bubbles powered by successive generations of supernovae, sweeping gas from the interstellar medium and venting it out of galactic discs.

Rodriguez Montero adds: "Our results are a first look at the extraordinary new insights that cosmic rays will provide to our understanding of the complex nature of galaxy formation."


Related Links
Royal Astronomical Society
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Seeing some cosmic x-ray emitters might be a matter of perspective
Pasadena CA (JPL) Jul 12, 2021
It's hard to miss a flashlight beam pointed straight at you. But that beam viewed from the side appears significantly dimmer. The same holds true for some cosmic objects: Like a flashlight, they radiate primarily in one direction, and they look dramatically different depending on whether the beam points away from Earth (and nearby space telescopes) or straight at it. New data from NASA's NuSTAR space observatory indicates that this phenomenon holds true for some of the most prominent X-ray emitter ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Flood-battered Germany approves major relief package

On Belarus border, EU guards patrol amid migrant 'crisis'

Flood-battered Germany approves major relief package

Germany vows to improve flood warning system as toll passes 165

STELLAR CHEMISTRY
2nd SOPS accepts new GPS satellite

GMV develops a new maritime Galileo receiver

NASA extends Cyclone Global Navigation Satellite System mission

Orolia's GNSS Simulators now support an ultra-low latency of five milliseconds

STELLAR CHEMISTRY
Human body size fluctuated in response to climate change over last million years

Archaeologists unveil grand building near Jerusalem's Western Wall

Kids learn language faster than adults because of how people speak to them

A new type of Homin unknown to science

STELLAR CHEMISTRY
Carbon emissions from wild pigs uprooting soil equal to more than 1M cars

Urban environments prompt fruit bats to diversify diet, study says

Social ties among spotted hyenas passed down from generation to generation

Water fleas demonstrate rapid evolution in response to predation

STELLAR CHEMISTRY
Air Force donates field hospital to Suriname to help fight COVID-19

APEC leaders agree to cooperate on global vaccine push

China says WHO plan to audit labs in Covid origins probe 'arrogant'

Travel restrictions lifted at 95% of U.S. military installations

STELLAR CHEMISTRY
Taiwan to use its own name at new Lithuania office

Hong Kong police arrest another Apple Daily editor under security law

Hong Kong police detain three former Apple Daily editors under security law

Hong Kongers arrested for sedition over children's books; 7 jailed for riot

STELLAR CHEMISTRY
Myanmar jade industry becoming 'slush fund' for junta: report

Raids worldwide as police reveal vast hack of criminal encrypted phones

ANOM: Hundreds arrested in 'staggering' global crime sting

STELLAR CHEMISTRY








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.