Medical and Hospital News  
EARLY EARTH
Creating 'synthetic' fossils in the lab sheds light on fossilization processes
by Staff Writers
Bristol UK (SPX) Jul 30, 2018

These are experimental samples compared to fossils down to the microscopic structure of melanosomes.

A newly published experimental protocol, involving University of Bristol scientists, could change the way fossilisation is studied.

In addition to directly studying fossils themselves, experimental treatments of fresh organismal remains can be utilised to study fossilisation.

One commonly employed experimental approach is known as 'artificial maturation', where high heat and pressure accelerate the chemical degradation reactions that normally occur over millions of years when a fossil is buried deep underground and exposed to geothermal heat and pressure from overlying sediment.

Maturation has been a staple of organic geochemists who wish to study the formation of fossil fuels and is in some ways similar to the more intense experimental conditions that produce synthetic diamonds.

More recently, maturation has been used to study the formation of exceptional fossils that preserve soft tissues as dark, organic films in addition to mineralised tissues like bone, including fossil dinosaurs from China with organically preserved feathers.

However, much maturation equipment is often limited by the use of small, sealed chambers which trap not only the highly stable organic molecules of interest to palaeontologists and organic geochemists, but also the breakdown products of less stable molecules that are less likely to be retained in fossils. Therefore, direct comparisons between the experiments and the fossils become complicated.

For example, when Evan Saitta, who recently submitted his PhD at the University of Bristol's School of Earth Sciences and is now a postdoctoral researcher at the Field Museum of Natural History in Chicago, ran these more traditional maturation experiments on feathers during his MSc (also at Bristol), the result was a foul-smelling fluid.

Jakob Vinther, senior lecturer at Bristol's School of Earth Sciences and School of Biological Sciences as well as Saitta's PhD and MSc advisor, added: "What we are coming to realise is that fossils aren't simply a result of how fast they rot, but rather the molecular composition of different tissues. However, it is inherently difficult to take the conceptual leap from understanding chemical stability to understanding how tissues and organs may, or may not, survive."

Saitta said: "By the end of my MSc, I became a bit ambitious. If maturation was known to be a useful simulation of fossilisation processes, I thought to myself, then running these experiments on specimens compacted in sediment might just produce 'synthetic' fossils. Fossils form in sedimentary rocks, which can be porous and would allow for volatile degradation products to escape."

Saitta then teamed up with Tom Kaye of the Foundation for Scientific Advancement who provided the engineering experience required to see the idea to fruition.

Kaye said: "My lab deals with high pressure devices all the time. We had the capability of compressing matrix around the specimens which was the game changer simulating burial. Our next step is to expand the system to take large specimens."

As the researchers describe in their new paper, published this week in the journal Palaeontology, the results did not disappoint.

Saitta explained: "The sediment acts as a filter allowing unstable molecules to escape from the sample, revealing browned, flattened bones surrounded by dark, organic films where soft tissues once were.

"These results closely resemble exceptional fossils, not just visually, but also microscopically as revealed using a scanning electron microscope."

Microscopic, pigment-bearing structures called melanosomes reside within the organic films in feathers and lizards treated with the new method while unstable protein and fatty tissues degrade and are lost, just as in exceptional fossils which have been used by scientists such as Vinther to reconstruct the original colours of dinosaurs.

Preliminary tests on leaves and beetles are also encouragingly comparable to their fossil equivalents, and tree resin can even be hardened in a manner resembling fossil copal or amber.

The researchers say the new method of sediment filtration represents an improvement upon earlier maturation experiments and will allow for the testing of many hypotheses regarding organic preservation in fossils and sediments.

Future additions to the protocol will incorporate other aspects of fossilisation beyond simulation of the heat and pressure of deep burial.


Related Links
University of Bristol
Explore The Early Earth at TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARLY EARTH
Sulfur analysis supports timing of oxygen's appearance
Houston TX (SPX) Jul 24, 2018
Scientists have long thought oxygen appeared in Earth's lower atmosphere 2.7 billion years ago, making life as we know it possible. A Rice University researcher has added evidence to support that number. The sulfur record held by ancient rock marks the dramatic change in the planet's atmosphere that gave rise to complex life, but rocks are local indicators. For the big picture, Rice biogeochemist Mark Torres used water that flows over and erodes the rocks as a proxy. Torres, a Rice assistan ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
That's cold: Japan tech blasts snoozing workers with AC

Two jailed for rigging Hong Kong-China bridge tests

Empathetic, calm dogs try to rescue owners in distress, study finds

Developing Microrobotics for Disaster Recovery and High-Risk Environments

EARLY EARTH
Europe's next Galileo satellites in place atop Ariane 5

CTSi flight tests prototype navigation system to replace GPS in highly contested environments for US Navy

Love navigated by Beidou

Next four Galileo satellites fuelled for launch

EARLY EARTH
Two baby mountain gorillas born in DR Congo's Virunga park

Gault site research pushes back date of earliest North Americans

Last survivor of Brazil tribe under threat: NGO

More than a quarter of the globe is controlled by indigenous groups

EARLY EARTH
NZ strikes off-note by stripping ivory off 123-yr-old British piano

Rise of the grasshoppers: New analysis redraws evolutionary tree for major insect family

It's a small world: In Japan, moss wins hearts

Tenth rhino dead in Kenya after disastrous transfer

EARLY EARTH
China launches nationwide vaccine sector inspection after scandal

Chinese president calls latest pharma scare "vile"

Surge for kids' vaccines in Hong Kong after China scandal

Censors jump into action as China's latest vaccine scandal ignites

EARLY EARTH
Historic Chinese town resists eviction for theme park

Tibet bans religious activities for students

Viral post inflames public anger in China vaccine scandal

Ten jailed in Vietnam over violent anti-China demos

EARLY EARTH
Three Mexican soldiers killed in ambush

EARLY EARTH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.