Medical and Hospital News  
TIME AND SPACE
Custom 'headphones' boost atomic radio reception 100-fold
by Staff Writers
Washington DC (SPX) May 24, 2022

Copper "headphones" boost the sensitivity of NIST's atomic radio receiver, which is composed of a gas of cesium atoms prepared in a special state inside the glass container. When an antenna located above the setup sends down a radio signal, the headphones boost the strength of the received signal a hundredfold.

Researchers at the National Institute of Standards and Technology (NIST) have boosted the sensitivity of their atomic radio receiver a hundredfold by enclosing the small glass cylinder of cesium atoms inside what looks like custom copper "headphones."

The structure - a square overhead loop connecting two square panels - increases the incoming radio signal, or electric field, applied to the gaseous atoms in the flask (known as a vapor cell) between the panels. This enhancement enables the radio receiver to detect much weaker signals than before. The demonstration is described in a new paper.

The headphone structure is technically a split-ring resonator, which acts like a metamaterial - a material engineered with novel structures to produce unusual properties. "We can call it a metamaterials-inspired structure," NIST project leader Chris Holloway said.

NIST researchers previously demonstrated the atom-based radio receiver. An atomic sensor has the potential to be physically smaller and work better in noisy environments than conventional radio receivers, among other possible advantages.

The vapor cell is about 14 millimeters (mm) long with a diameter of 10 mm, roughly the size of a fingernail or computer chip, but thicker. The resonator's overhead loop is about 16 mm on a side, and the ear covers are about 12 mm on a side.

The NIST radio receiver relies on a special state of the atoms. Researchers use two different color lasers to prepare atoms contained in the vapor cell into high-energy ("Rydberg") states, which have novel properties such as extreme sensitivity to electromagnetic fields. The frequency and strength of an applied electric field affects the colors of light absorbed by the atoms, and this has the effect of converting the signal strength to an optical frequency that can be measured accurately.

A radio signal applied to the new resonator creates currents in the overhead loop, which produces a magnetic flux, or voltage. The dimensions of the copper structure are smaller than the radio signal's wavelength. As a result, this small physical gap between the metal plates has the effect of storing energy around the atoms and enhancing the radio signal. This boosts performance efficiency, or sensitivity.

"The loop captures the incoming magnetic field, creating a voltage across the gaps," Holloway said. "Since the gap separation is small, a large electromagnetic field is developed across the gap."

The loop and gap sizes determine the natural, or resonant, frequency of the copper structure. In the NIST experiments the gap was just over 10 mm, limited by the outside diameter of the available vapor cell. The researchers used a commercial mathematical simulator to determine the loop size needed to create a resonant frequency near 1.312 gigahertz, where Rydberg atoms switch between energy levels.

Several outside collaborators helped model the resonator design. Modeling suggests the signal could be made 130 times stronger, whereas the measured result was roughly a hundredfold, likely due to energy losses and imperfections in the structure. A smaller gap would produce greater amplification. The researchers plan to investigate other resonator designs, smaller vapor cells and different frequencies.

With further development, atom-based receivers may offer many benefits over conventional radio technologies. For example, the atoms act as the antenna, and there is no need for traditional electronics that convert signals to different frequencies for delivery because the atoms do the job automatically. The atom receivers can be physically smaller, with micrometer-scale dimensions. In addition, atom-based systems may be less susceptible to some types of interference and noise.

The research is funded in part by the Defense Advanced Research Projects Agency and the NIST on a Chip program. Modeling assistance was provided by collaborators from the University of Texas, Austin; City University of New York, N.Y.; and University of Technology Sydney, Australia.

Research Report:Rydberg atom-based field sensing enhancement using a split-ring resonator


Related Links
NIST on a Chip program
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Halting a wave in its tracks
Washington DC (SPX) May 24, 2022
Topological ideas have recently taken the center stage of modern electromagnetics. Typical topological photonic systems are based on nonreciprocal materials, a class of materials that enables asymmetric light-matter interactions. In particular, nonreciprocal platforms, may support unidirectional channels that allow propagation in a given direction of space-let's say from left to right, but not the other way around. Such unidirectional guides are of key importance in optical systems because their m ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
For Iraqis back from Syria, life on hold in 'rehabilitation' camp

Israeli firm hopes AI can curb drownings

Record-breaking cold in Brazil threatens homeless, crops

IAEA chief praises progress on Fukushima decommissioning

TIME AND SPACE
Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

Xona passes critical testing milestone as private GNSS readies for launch

China Satellite Navigation Conference to highlight digital economy, intelligent navigation

TIME AND SPACE
Brazil's Lula slams Bolsonaro indigenous policies

Dancing in the light

Brazil Yanomami land turns 30 with little to celebrate

Environment scientists close in on 'golden spike' to define Anthropocene

TIME AND SPACE
Zimbabwe rallies allies to push for legal ivory trade

A family of termites has been traversing the world's oceans for millions of years

Turtles freed in Tunisia with tracking monitor

Hive mind: Tunisia beekeepers abuzz over early warning system

TIME AND SPACE
'The pandemic won't stop us': the Beijingers skirting Covid rules

Monkeypox: 'too early to call it an epidemic'

Chinese province of 100 million to Covid test every 2 days; Beijing quarantines 1000s

Shanghai partly resumes public transport in patchy reopening

TIME AND SPACE
Beijing says Blinken speech 'smears China'

Dazzling but empty stadiums a symbol of China's fading football dream

Hong Konger gets over six years in jail for Telegram protest channel

Top Hungary court bars vote on Chinese university plan

TIME AND SPACE
TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.