Medical and Hospital News  
TECH SPACE
DARPA kicks off program to explore space-based manufacturing
by Staff Writers
Washington DC (SPX) Mar 25, 2022

"Assuming current space technology trends continue, in 10-20 years we expect to see advances that will enable DoD to take full advantage of the NOM4D-developed technologies and capabilities," Carter said. "This includes robotic manipulation sufficient to enable assembly of large structures from NOM4D-manufactured components, enhanced on-orbit mobility, and routine re-fueling of on-orbit assets. We also anticipate several other advantages, including more affordable space access and launch costs in LEO [low-earth orbit], GEO [geosynchronous orbit], cislunar space, and beyond."

DARPA's Novel Orbital Moon Manufacturing, Materials, and Mass Efficient Design (NOM4D) program is underway with eight industry and university research teams on contract. The selected teams are tasked to provide foundational proofs of concept in materials science, manufacturing, and design technologies to enable production of future space structures on orbit without the volume constraints imposed by launch. The vision is to ferry raw materials from Earth and collect lunar materials for on-orbit manufacturing.

The NOM4D program does not involve building any structures on the surface of the moon. All manufacturing would be done in orbital construction facilities and the results utilized in orbital applications.

"Current space systems are all designed, built, and tested on Earth before being launched into a stable orbit and deployed to their final operational configuration," said Bill Carter NOM4D program manager in DARPA's Defense Sciences Office.

"These constraints are particularly acute for large structures such as solar arrays, antennas and optical systems, where size is critical to performance. NOM4D aims to enable a new paradigm where future structures that support DoD space systems are built off-Earth using designs optimized for the space environment, shedding launch constraints. This would enable enhanced capability, improved robustness, operation in higher orbits, and future cislunar applications."

For NOM4D, performers won't be launching raw materials into space, collecting lunar samples or building structures on orbit. Any orbital experimentation would happen in potential follow-on efforts.

The following research teams are on contract to pursue a variety of challenges focused on two areas listed below:

In-space materials and manufacturing

+ HRL Laboratories, LLC, Malibu, California, will be developing new die-less fabrication processes to make orbital mechanical elements and bonded structures on-orbit.

+ University of Florida, Gainesville, Florida, will develop predictive material and correlative process models to enable on-orbit use of laser forming.

+ University of Illinois Urbana-Champaign, Champaign, Illinois, is working to develop a high precision in-space composite forming process utilizing self-energized frontal polymerization.

+ Physical Sciences, Inc., Andover, Massachusetts, will develop continuous fabrication of regolith-derived, glass-ceramic mechanical structures for use in large-scale orbital applications.

+ Teledyne Scientific Company, LLC, Thousand Oaks, California, will build a comprehensive materials properties database of additive-modified regolith for use in controlled thermal expansion precision orbital structures.

Mass-efficient designs for in-space manufacturing

+ University of Michigan, Ann Arbor, Michigan, will explore new design approaches to mass-efficient, high- precision, stable and resilient space structures based on metamaterial and metadamping concepts.

+ Opterus Research and Development, Inc., Loveland, Colorado, will develop designs for extreme mass efficient large-scale structures optimized for resiliency and mobility.

+ California Institute of Technology, Pasadena, California, will design novel tension and bending hybrid architectures and structural components with highly anisotropic mechanical response.

During Phase 1, program performers are tasked to meet stringent structural efficiency targets supporting a megawatt-class solar array. In Phase 2, teams are tasked to increase mass efficiency and demonstrate precision manufacturing for radio frequency (RF) reflectors. In the final phase, performers are tasked to demonstrate precision for infrared (IR) reflectors.

"Assuming current space technology trends continue, in 10-20 years we expect to see advances that will enable DoD to take full advantage of the NOM4D-developed technologies and capabilities," Carter said.

"This includes robotic manipulation sufficient to enable assembly of large structures from NOM4D-manufactured components, enhanced on-orbit mobility, and routine re-fueling of on-orbit assets. We also anticipate several other advantages, including more affordable space access and launch costs in LEO [low-earth orbit], GEO [geosynchronous orbit], cislunar space, and beyond."


Related Links
Defense Advanced Research Projects Agency
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Unlimited 3D printing for space
Paris (ESA) Mar 17, 2022
A standard 3D printer cannot produce anything bigger than the size limits of the printer itself. But this new IMPERIAL 3D printer, designed for use in space by a Europe-wide industrial consortium, can print high performance polymer parts of unlimited size along one dimension. What is also known as 'Additive manufacturing' is an essential enabling technology for deep space crewed missions. Built to operate in weightlessness - meaning it can work upside down on Earth - this printer has been speciall ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Russia occupies Chernobyl staff town, Kyiv says

Kyiv says using AI, social media to identify slain Russians

Final victim found, Peru landslide toll hits eight

Ukraine finally rotates workers at Chernobyl: IAEA

TECH SPACE
Identifying RF and GPS interferences for military applications with satellite data

Ukraine war disrupts GPS in Finland, Mediterranean

China's BeiDou enters new phase of stable services, rapid development

Galileo 2nd generation satellites ready to navigate into the future

TECH SPACE
New predictive model helps in identify ancient hunter-gatherer sites

Ancient campfires reveal a 50,000 year old grocer and pharmacy

Grains hints at origin of 7,000-year-old Swiss pile dwellings

Early humans kept old stone tools to preserve memory of their ancestors

TECH SPACE
'Rhino bond' charges onto markets to save S. African animals

Europe raptor numbers down 55,000 due to gun-lead poison: study

Once-starving lions roar back to life in Sudan sanctuary

UN launches biodiversity talks on deal to protect nature

TECH SPACE
Shanghai warns against 'panic' as Covid cases mount

Hong Kong's top scientsts urge shift from Beijing's zero-Covid strategy

China reports two Covid-19 deaths, first in more than a year

Unitaid to finance HIV shots in Brazil, South Africa

TECH SPACE
Hong Kong martial arts teacher charged over sedition, weapons

Unwed and unwanted, Chinese single mothers fight for rights

Hong Kong leader defends mainland medics; Shenzhen eases lockdown

Shanghai tailors keep qipao dress tradition alive

TECH SPACE
Iran, Russia, China start war games to counter 'maritime piracy'

Denmark shelves prosecution of Africa piracy suspects

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.