Medical and Hospital News  
STELLAR CHEMISTRY
Dark Matter and Particle Acceleration in Near Space
by Andrea Dunn ISS Science News
Houston TX (SPX) Nov 10, 2015


The CALorimetric Electron Telescope (CALET) is transferred from the exposed pallet to the Kibo's exposed facility. Image courtesy JAXA. For a larger version of this image please go here.

Peering into darkness can strike fear into the hearts of some, but a new space telescope will soon peer into the darkness of "near space" (within a few thousand light years of Earth). Scientists are using the telescope to seek answers related to the field of high-energy astrophysics.

The CALorimetric Electron Telescope (CALET) investigation will rely on the instrument to track the trajectory of cosmic ray particles and measure their charge and energy. The instrument is optimized for measuring electrons and gamma rays, which may contain the signature of dark matter or nearby sources of high-energy particle acceleration.

"The investigation is part of an international effort (involving Japan, Italy and USA) to understand the mechanisms of particle acceleration and propagation of cosmic rays in the galaxy, to identify their sources of acceleration, their elemental composition as a function of energy, and possibly to unveil the nature of dark matter," said CALET principal investigator Dr. Shoji Torii.

"We know that dark matter makes up about a quarter of the mass-energy of the universe, but we can't see it optically and don't know what it is," said Dr. John Wefel, and CALET co-principal investigator for the US team. "If CALET can see an unambiguous signature of dark matter, it could potentially produce a new understanding of the nature of dark matter."

Right now, scientists are much more certain what dark matter is not, rather than what it is. This research may help scientists identify dark matter and fit it, more accurately, into standard models of the universe.

CALET launched aboard the Japan Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle "Kounotori" (HTV-5) in August 2015 and was placed on the International Space Station's Japanese Experiment Module - Exposed Facility just days after its arrival.

The instrument is a charged particle telescope designed to measure electrons, protons, nuclei and gamma rays. Unlike the telescopes that are used to pinpoint stars and planets in the night sky, CALET operates in a scanning mode. As it looks upward, it records each cosmic ray event that enters its field of view and triggers its detectors to take measurements of the cosmic ray. These measurements are recorded on the space station and sent to a ground station where they are fed into computers running analysis codes that allow scientists to reconstruct each event.

From the resulting measurements, scientists must then separate electrons from the protons, gamma rays and the higher Z elements (chemical elements with >1 proton in the nucleus). They then sort the particles by energy to extend the existing data to higher energies and search for signatures of new astrophysics processes and phenomena like dark matter and nearby particle acceleration to study cosmic ray propagation in the galaxy.

"The major theoretical model attributes dark matter to weakly interacting massive particles (WIMPs), whose nature is predicted by various high energy physics models," said Torii. "In these models, a WIMP would be its own antiparticle and, when two of them get together, they annihilate, producing known particles like electron/positron pairs, proton/anti-proton pairs, and gamma rays."

Searching for excess annihilation products (i.e. electrons and gamma rays) is one way to try to identify a dark matter candidate and this is where CALET helps scientists. CALET joins another ISS investigation searching for excess annihilation products, the Alpha Magenetic Spectrometer or AMS, which is looking at positrons and antiprotons to identify dark matter.

"Dark matter is still a puzzle," said Torii. "By measuring with good energy resolution the spectrum of high energy cosmic electrons and photons, CALET may make a discovery or exclude existing models."

"Seeing an appropriate signature in the electron spectrum and/or gamma rays would be extremely important since this would set the mass scale (weight) for the dark matter particles, which would in turn allow theorists to better determine new physics associated with the WIMP," said Torii, adding that it is possible that a signature may be found that is not indicative of dark matter, but rather indicates a nearby source of charged particle acceleration.

"The latter would be [a] huge achievement since no individual sources have ever been positively identified," said Torii. "Such objects seem to be able to accelerate particles to energies far higher than we can achieve on Earth using the largest machines and we want to learn how nature does this, with possible applications here on Earth."

Understanding the location of these sources as well as particle propagation (the time particles spend, and distance traveled, wandering around the galaxy) means scientists can infer the shape of the cosmic ray spectrum at the source. Gaining a better understanding of how cosmic rays originate and the mechanisms of particle acceleration and propagation is important to space travel and for understanding the radiation environment in space and on Earth.

"Basically, CALET is after new information about how our little corner of the universe works," said Torii, who added that the investigation underscores the importance of the space station as a platform for performing investigations and for successful international collaboration.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The CALorimetric Electron Telescope (CALET) i
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Dark energy probe involving U-M reaches critical milestone
Ann Arbor MI (SPX) Sep 28, 2015
A giant instrument that will create a high-definition, 3-D map of a swath of the universe going back 10 billion light-years has just reached a critical milestone with its funding agency, the Department of Energy. University of Michigan researchers will build critical components of DESI, the Dark Energy Spectroscopic Instrument. Its mission is to shed light on the role of dark energy in the ... read more


STELLAR CHEMISTRY
McMurdo completes MEOSAR satellite ground station in New Zealand

Italy's painstaking bid to identify shipwrecked migrants

Painfully slow rebuild after Philippine super typhoon

Africa's Lake Chad could fuel new migrant crisis: UN

STELLAR CHEMISTRY
Orbital ATK products enable improved global positioning on Earth

Galileo pair preparing for December launch

GPS IIF satellite successfully launched from Cape Canaveral

U.S. Air Force prepares to launch next GPS IIF satellite

STELLAR CHEMISTRY
Early proto-porcelain from China likely made from local materials

Environment and climate helped shape varied evolution of human languages

Divisive religious beliefs humanity's biggest challenge: Grayling

Predicting the human genome using evolution

STELLAR CHEMISTRY
Indonesia orangutans attacked by villagers after fleeing fires

Tanzanian police arrest four Chinese with 11 rhino horns

Ice-age lesson: Large mammals need room to roam

Ancient long-extinct amphibians discovered in Brazil

STELLAR CHEMISTRY
Monkeys in Asia harbor virus from humans, other species

Over 230,000 vaccinated in Iraq anti-cholera campaign

What ever happened to West Nile virus

Ebola: The epidemic's timeline

STELLAR CHEMISTRY
China two-child policy to add 3 million babies a year: officials

China artist comes out... as French

The loneliness of China's long-serving enforcers

China's 'leftover women' fight back: Fincher

STELLAR CHEMISTRY
Villagers recall fear as troops fired in 'Chapo' raid

Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

STELLAR CHEMISTRY
Weak China inflation stokes fears over slowing demand

Weak China inflation stokes fears over slowing demand

China gives currency largest boost in a decade

Japan Post soars, HK-Shenzhen connect boosts stocks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.