Medical and Hospital News  
CHIP TECH
Demystifying mechanotransduction ion channels
by Staff Writers
Washington DC (SPX) Mar 02, 2016


Mechanotransduction.. Image courtesy Bailong Xiao. For a larger version of this image please go here.

As blood flows through our vessels, the cells that constitute these vessels responds to the shear stress of blood flow to ensure normal circulation. This process of converting a mechanical force into a biological function is known as "mechanotransduction."

But a bit of mystery has enshrouded the type of specialized mechanotransducers - force sensors - underlying the process and how they're able to sense a force and, subsequently, transduce to downstream biological functions.

During the Biophysical Society's 60th Annual Meeting, being held in Los Angeles, Calif., Feb. 27-March 2, 2016, Bailong Xiao, an associate professor at Tsinghua University's School of Pharmaceutical Sciences, in Beijing, China, will share a big discovery made while exploring how newly identified mechanotransducers function at the molecular level.

"Mechanosensitive channels represent a class of ion channels that respond to mechanical force stimulation and allow ions to enter or exit cells," explained Xiao. "They are suspected of serving as key mechanotransducers for mechanotransduction, but the molecular identities of mechanosensitive cation channels in mammals were unknown until the identification of the evolutionarily conserved Piezo family of proteins - including Piezo1 and Piezo2 - by Dr. Ardem Patatpoutian's lab at the Scripps Research Institute in 2010."

Since then, it's been shown that Piezo proteins play critical roles in various mechanotransduction processes. "Piezo1, for example, plays a key role in sensing blood-flow-associated shear stress and, consequently, controlling vascular development and function," he said. "In humans, mutations of Piezo1 or Piezo2 genes have been linked to genetic diseases."

Piezo proteins are complex transmembrane proteins that don't possess notable sequence homology with any known class of ion channels. "These features make it difficult to study their structure-function relationship using traditional site-directed mutagenesis approaches," Xiao elaborated. "While working in Patatpoutian's lab as a postdoctoral fellow, we previously demonstrated that Piezo1 proteins form a novel class of ion channels." This work was published in the journal Nature in 2012, and Xiao was co-first author.

But fundamental questions remained unanswered, among them: How do these proteins three-dimensionally organize into mechanosensitive channels? How do they conduct ions and respond to force stimulation?

After setting up his own lab at Tsinghua University in Beijing, Xiao began tackling these questions.

In a paper the group published in Nature in 2015, along with collaborators at the university, they reported resolving the cryo-electron microscopy (cryo-EM) structure of the full-length mouse Piezo1.

Now in a paper published online in Neuron on Feb. 25, 2016, the group reports "functionally identifying bona-fide ion-conducting pore and mechanotransduction components," Xiao said. "Our findings demonstrate that Piezo1 proteins consist of distinct and separate modules responsible for ion conduction, mechanical force sensing and transduction to coordinately fulfill their function as sophisticated mechanosensitive channels."

This is consistent with the structural organization of these functional modules into a unique three-bladed, propeller-shaped architecture of Piezo1, according to Xiao. "Our studies significantly advance our mechanistic understanding of how this evolutionarily conserved and physiologically important class of mechanosensitive channels respond to mechanical force and, consequently, conduct ions for biological functions," he added.

In terms of applications, his group's studies "help us understand the specialized force sensors such as Piezo1 ion channels that play critical roles in vascular development and blood cell function, which might enable us to design novel therapeutics in the future to treat diseases caused by abnormal functions of these mechanotransducers," Xiao said.

Next, Xiao and his group are planning more mechanistic studies to gain a better understanding of the mechanosensitive channels and to identify ways to manipulate their functions. "In the long run, we hope to develop novel therapeutics by targeting these mechanosensors," he said.

Presentation #1722, "Structural and functional characterizations of the mechanosensitive piezo channel," is authored by Bailong Xiao. It will be at 9:45 a.m. PT on Tuesday, March 1, 2016 in Room 515B of the Los Angeles Convention Center


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Biophysical Society
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CHIP TECH
Quantum dot solids: This generation's silicon wafer
Ithaca NY (SPX) Mar 01, 2016
Just as the single-crystal silicon wafer forever changed the nature of communication 60 years ago, a group of Cornell researchers is hoping its work with quantum dot solids - crystals made out of crystals - can help usher in a new era in electronics. The team, led by Tobias Hanrath, associate professor in the Robert Frederick Smith School of Chemical and Biomolecular Engineering, and gradu ... read more


CHIP TECH
Nuclear water: Fukushima still faces contamination crisis

Screening truffles for radioactivity 30 years from Chernobyl

MH370 lawsuits gain pace as two-year deadline nears

Brazil police charge seven in Samarco mine deaths: reports

CHIP TECH
Europe speeds up launches for sat-nav system

NASA Contributes to Global Navigation Standard Update

Sea level mapped from space with GPS reflections

Wirepas launches a dedicated connectivity product for beacons

CHIP TECH
Easter Island not destroyed by war, analysis of 'spear points' shows

Neanderthals and modern H. sapiens crossbred over 100,000 years ago

Neanderthals mated with modern humans much earlier than previously thought

Modern 'Indiana Jones' on mission to save antiquities

CHIP TECH
Dodos might have been quite intelligent, new research finds

Humans speeding up evolution by causing extinction of 'younger' species

Creation of an island: The extinction of animals on Zanzibar

Fifth of Finland's wolves killed in month-long cull

CHIP TECH
Brazil military fight mosquitoes, flower pot to flower pot

What does turbulence have in common with an epidemic?

New study highlights effectiveness of a herpesvirus CMV-based vaccine against Ebola

Brazil army will go door-to-door in fight against Zika

CHIP TECH
Chinese rights lawyer masterminded "illegal religious gatherings": report

China takes down gay online drama: report

Hong Kong finance chief warns of political unrest as economy weakens

Flagship gallery show raises fears for Hong Kong arts

CHIP TECH
Two Mexican marines, suspect killed in shootout

CHIP TECH
G20 nations pledge all tools to lift growth

G20 nations face slowing global growth in China meeting

China cuts reserve requirements in bid to boost economy

China central bank chief seeks to reassure on yuan, growth









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.