Medical and Hospital News  
IRON AND ICE
Designing better asteroid explorers
by Staff Writers
Rochester UK (SPX) Jul 15, 2020

illustration only

Recent NASA missions to asteroids have gathered important data about the early evolution of our Solar System, planet formation, and how life may have originated on Earth. These missions also provide crucial information to deflect asteroids that could hit Earth.

Missions like the OSIRIS-REx mission to Asteroid Bennu and the Hyabusa II mission to Ryugu, are often conducted by robotic explorers that send images back to Earth showing complex asteroid surfaces with cracked, perched boulders and rubble fields.

In order to better understand the behavior of asteroid material and design successful robotic explorers, researchers must first understand exactly how these explorers impact the surface of asteroids during their touchdown.

In a paper published in the journal Icarus, researchers in the University of Rochester's Department of Physics and Astronomy, including Alice Quillen, a professor of physics and astronomy, and Esteban Wright, a graduate student in Quillen's lab, conducted lab experiments to determine what happens when explorers and other objects touch down on complex, granular surfaces in low gravity environments. Their research provides important information in improving the accuracy of data collection on asteroids.

"Controlling the robotic explorer is paramount to mission success," Wright says. "We want to avoid a situation where the lander is stuck in its own landing site or potentially bounces off the surface and goes in an unintended direction. It may also be desirable for the explorer to skip across the surface to travel long distances."

The researchers used sand to represent an asteroid's surface in the lab. They used marbles to measure how objects impact the sandy surfaces at different angles, and filmed the marbles with high-speed video in order to track the marbles' trajectories and spin during impact with the sand.

"Granular materials like sand are usually quite absorbent upon impact," Quillen says. "Similar to a cannonball ricocheting off of water, pushed sand can act like a snow in front of a snowplow, lifting the projectile, causing it to skip off the surface."

The researchers constructed a mathematical model that includes the Froude number, a dimensionless ratio that depends on gravity, speed, and size. By scaling the model with the Froude number, the researchers were able to apply the knowledge gained from their experiments with the marbles to low gravity environments, such as those found on the surfaces of asteroids.

"We found that at velocities near the escape velocity - the velocity at which an object will escape gravitational attraction - many if not most rocks and boulders are likely to ricochet on asteroids," Wright says.

The results provide an explanation for why asteroids have strewn boulders and rocks that are perched on their surfaces, and they also influence the angle at which robotic missions will need to successfully touch down on the surface of an asteroid.

"Robotic missions that touch down on the surface of an asteroid will need to control the moment of touch down so that they don't bounce," Quillen says.

"The robots can accomplish this by making their angle of impact nearly vertical, by reducing the velocity of impact to a very small value, or by making the velocity of impact large enough to form a deep crater that the robotic explorer won't bounce out of."

Research paper


Related Links
University Of Rochester
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
Building NASA's Psyche: Design Done, Now Full Speed Ahead on Hardware
Pasadena CA (JPL) Jul 09, 2020
Psyche, the NASA mission to explore a metal-rock asteroid of the same name, recently passed a crucial milestone that brings it closer to its August 2022 launch date. Now the mission is moving from planning and designing to high-gear manufacturing of the spacecraft hardware that will fly to its target in the main asteroid belt between Mars and Jupiter. Like all NASA missions, early work on Psyche started with drawing up digital blueprints. Then came the building of engineering models, which were te ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Iran says damage at nuclear site 'significant'

Myanmar army sacks officers over landslide tragedy

More than 160 dead in Myanmar jade mine landslide

Iran reports 'accident' at nuclear site, warns enemies

IRON AND ICE
SMC contracts for Joint Modernized GPS Handheld Device across multiple suppliers

GPS isn't just for road trips anymore

China's last BDS satellite enters long-term operation mode

GPS 3 satellite on route to orbital slot under own propulsion

IRON AND ICE
Racism in the UK: the effects of a 'hostile environment'

Early peoples in Pacific Northwest were smoking smooth sumac

In the wild, chimpanzees are more motivated to cooperate than bonobos

Archaeologists find ancient circle of deep shafts near Stonehenge

IRON AND ICE
Pandemic highlights danger posed by wildlife crime: UN report

Silk Road discovery suggests cats were pets 1,000 years ago

Dozens of endangered dorcas gazelles killed by poachers in Niger

Scientists move to create single, comprehensive list of Earth's living species

IRON AND ICE
Kazakhstan denies China's claim of new deadly virus

Coronavirus can still be brought under control: WHO

Inventor of Israel's Iron Dome seeks coronavirus 'game-changer'

China virus city in transport shutdown as WHO delays decision

IRON AND ICE
Mixed reaction from Hong Kong expats to UK visas offer

US warns of 'arbitrary detention' risk in China

Sweden ex-envoy faces verdict in China dissident case

No regrets: wounded Hong Kong police vow to keep enforcing law

IRON AND ICE
China says five sailors kidnapped off Nigeria

Sweden extradites Chinese 'multi-million-dollar money launderer' to US

IRON AND ICE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.