Medical and Hospital News  
TECH SPACE
Designing new materials from 'small' data
by Staff Writers
Chicago IL (SPX) Feb 21, 2017


This is the novel data science approach using machine learning to find promising materials from small data. Image courtesy James Rondinelli.

Finding new functional materials is always tricky. But searching for very specific properties among a relatively small family of known materials is even more difficult. But a team from Northwestern Engineering and Los Alamos National Laboratory found a workaround. The group developed a novel workflow combining machine learning and density functional theory calculations to create design guidelines for new materials that exhibit useful electronic properties, such as ferroelectricity and piezoelectricity.

Few layered materials have these qualities in certain geometries - crucial for developing solutions to electronics, communication, and energy problems - meaning there was very little data from which to formulate the guidelines using traditional research approaches.

"When others look for new materials, typically they look in places where they have a lot of data from similar materials. It's not necessarily easy by any means, but we do know how to distill information from large datasets," said James M. Rondinelli, assistant professor of materials science and engineering in the McCormick School of Engineering. "When you don't have a lot of information, learning from the data becomes a difficult problem."

The research is described in the paper "Learning from data to design functional materials without inversion symmetry," appearing in the Feb. 17, 2017, issue of Nature Communications. Prasanna Balachandran of Los Alamos National Lab in New Mexico is the paper's coauthor. Joshua Young, a former graduate student in Rondinelli's lab, and Turab Lookman, a senior researcher at Los Alamos, also contributed.

Supported by funding from the National Science Foundation and the Laboratory Directed Research and Development Program through Los Alamos, Rondinelli's group focused on a class of two-dimensional complex oxides - or Ruddlesden-Popper oxides. These materials exhibit many technology-enabling properties, such as ferroelectricity and piezoelectricity, and can be interfaced with traditional semiconductor materials found in today's electronic devices.

"In this family, the data set is puny. Currently, there are only around 10 to 15 materials that are known with the desired properties," Rondinelli said. "This is not much data to work with. Traditionally data science is used for big data problems where there is less of a need for domain knowledge."

"Despite the small data nature of the problem," Balachandran added, "our approach worked because we were able to combine our understanding of these materials (domain knowledge) with the data to inform the machine learning."

Therefore, the group began building a database of known materials and using machine learning, a subfield of computer science that builds algorithms capable of learning from data and then using that learning to make better predictions. "With machine learning, we are able to identify chemical compositions that are likely candidates for the material you want to develop," he said.

Of the more than 3,000 possible materials investigated, the data science approach found more than 200 with promising candidates. Next, the team applied several types of rigorous quantum mechanical calculations. This assessed the atomic structures of the potential materials and checked their stability.

"We wondered: Would the material have the predicted structure? Does it have electric polarization? Can it be made in a laboratory?" Rondinelli added.

This work narrowed the possibilities to 19, which were recommended for immediate experimental synthesis. Yet there are likely many more possibilities among the 200 candidates.

Typically, when developing new materials, the number of possibilities is too large to explore and develop each one. The process of screening potential materials is very expensive, and scientists must be selective in their investments.

"Our work has the potential to help save enormous amounts of time and resources," Balachandran said. "Instead of exploring all possible materials, only those materials that have the potential to be promising will be recommended for experimental investigation."

Research paper

TECH SPACE
Terahertz chips a new way of seeing through matter
Princeton NJ (SPX) Feb 10, 2017
Electromagnetic pulses lasting one millionth of a millionth of a second may hold the key to advances in medical imaging, communications and drug development. But the pulses, called terahertz waves, have long required elaborate and expensive equipment to use. Now, researchers at Princeton University have drastically shrunk much of that equipment: moving from a tabletop setup with lasers and mirro ... read more

Related Links
Northwestern University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Civilians trickle towards Iraq forces in new Mosul assault

Berlusconi lunch on auction to help Italy quake victims

Hong Kong 'Snowden refugees' sought by Sri Lanka agents: lawyer

'Anybody could be a refugee': Ai Weiwei films global crisis

TECH SPACE
Police in China's restive Xinjiang to track cars by GPS

GLONASS station in India to expedite 'space centric' warfare command

Australia and Lockheed field 2nd-Gen sat-based augmentation system

UK may lose access to EU Galileo GPS system after Brexit

TECH SPACE
Tiny fibers open new windows into the brain

New evidence highlights maternal hierarchy of Pueblo Bonito

Flat-footed fighters

Advances in imaging could deepen knowledge of brain

TECH SPACE
Ants stomp, termites tiptoe: Predator detection by a cryptic prey

Wintering ducks connect isolated wetlands by dispersing plant seeds

Bees can learn to roll a ball for food: study

Those who help each other can invade harsher environments

TECH SPACE
First drug-resistant malaria parasite detected in Africa

Bird-flu deaths rise in China, shutting poultry markets

Test can detect HIV within a week of infection: researchers

At least five infected with HIV at Chinese traditional medicine hospital

TECH SPACE
Over 30,000 gather to support jailed Hong Kong cops: reports

China jails safety boss who was sacked over huge blast

China muzzles feminist group over anti-Trump posts

China selfie-app leader seeks to 'beautify the world'

TECH SPACE
Philippines seeks US, China help to combat sea pirates

TECH SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.