Medical and Hospital News  
NANO TECH
Developing a nanoscale 'clutch'
by Staff Writers
Bristol, UK (SPX) Oct 07, 2015


A model microscopic system to demonstrate the transmission of torque in the presence of thermal fluctuations -- necessary for the creation of a tiny 'clutch' operating at the nanoscale -- has been assembled at the University of Bristol, UK. This image shows the principle of operation of the 'nanoclutch': red spheres rotate clockwise and an opposing torque is applied to a central axle. Image courtesy Dr Paddy Royall, University of Bristol. For a larger version of this image please go here.

A model microscopic system to demonstrate the transmission of torque in the presence of thermal fluctuations - necessary for the creation of a tiny 'clutch' operating at the nanoscale - has been assembled at the University of Bristol as part of an international collaboration.

When driving a car, the clutch mechanically carries the torque produced by the engine to the chassis of the vehicle - a coupling that has long been tested and optimized in such macroscopic machines, giving us highly efficient engines.

For microscopic machines, however, developing a clutch which would operate at the nanoscale is much more challenging because, at microscopic length scales, different physics need to be considered. Thermal fluctuations play an increasingly dominant role as a device is miniaturised, leading to increased dissipation of energy and the need to develop new design principles.

In the model microscopic system developed by scientists from Bristol, Dusseldorf, Mainz, Princeton and Santa Barbara, a ring of colloidal particles are localised in optical tweezers and automatically translated on a circular path, transferring a rotational motion to an assembly of identical colloids confined to the interior region.

Dr Paddy Royall of the University of Bristol said: "This device looks a lot like a washing machine, but the dimensions are tiny. Through optical manipulation the particle ring can be squeezed at will, altering the coupling between the driven and loaded parts of the assembly and providing a clutch-like operation mode."

Colloidal suspensions fall into the category of materials known as 'soft matter', and the softness of the rotational device is shown to lead to new transmission phenomena not observed in macroscopic machines. "Exploiting the softness of nanomaterials gives us additional and unprecedented control mechanisms which may be employed when designing microscopic machines," Dr Royall explained.

In addition to the experiments performed at the University of Bristol, physicists at the University of Dusseldorf have developed model computer simulations to further investigate torque coupling at the nanoscale. This enables the measurement of nanomachine efficiency, which is small but can be optimised through careful control of the system parameters.

The researchers have identified three different transmission regimes: a solid-like scenario which transmits torque much like a macroscopic gear; a liquid-like scenario in which much of the energy input is lost to friction and an intermediate slipping scenario unique to soft materials which combines aspects of the solid-like and liquid-like behaviours.

"A basic understanding of the coupling process will give us insight into the construction of nanomachines, in which torque transfer is absolutely essential," said Professor Hartmut Loewen of the University of Dusseldorf.

The research is published in Nature Physics. Paper: 'Transmission of torque at the nanoscale' by Ian Williams, Erdal C Oguz, Thomas Speck, Paul Bartlett, Hartmut Loewen and C. Patrick Royall in Nature Physics.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Bristol
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
Nanocellulose materials by design
Chicago IL (SPX) Oct 06, 2015
Theoretically, nanocellulose could be the next hot supermaterial. A class of biological materials found within numerous natural systems, most notably trees, cellulose nanocrystals have captured researchers' attention for their extreme strength, toughness, light weight, and elasticity. The materials are so strong and tough, in fact, that many people think they could replace Kevlar in ballistic ve ... read more


NANO TECH
Man survives on ants for six days in remote Australia

New warehouse blast hits Tianjin: China state media

LORELEI Imagines Rapid Automated Language Toolkit

Drama therapy breaks new ground for Iraq's teenage girls

NANO TECH
ISRO looking to extend GPS services to SAARC countries

Last of the dozen GPS IIF satellites arrive at CCAFS for processing

Glonass system can fully switch to domestic electronics in 2 years

China launches 20th Beidou navigation satellite

NANO TECH
Breakthrough for electrode implants in the brain

Researchers build a digital piece of brain

Foot fossils of human relative shows evolutionary 'messiness' of bipeds

Research reveals new clues about how humans become tool users

NANO TECH
Threat posed by 'pollen thief' bees uncovered

Characteristics of mammalian melanopsins for non-visual photoreception

WWF: East Himalaya surveys yield more than 200 new species

Evidence for functional redundancy in nature

NANO TECH
Antiviral compound offers full protection from Ebola in nonhuman primates

Cholera cases in Iraq top 1,200: ministry

Trio win Nobel Medicine Prize for parasite therapies

Chip-based technology enables reliable direct detection of Ebola virus

NANO TECH
China pledges veteran pension funding after protests

Two allies of China ex-security chief jailed for graft

China probing provincial governor for graft: state media

Hong Kong former leader charged over corruption

NANO TECH
Chinese 'thief' swallowed diamond, tried to flee Thailand

Army's role questioned in missing Mexican students case

NANO TECH
China to set new plan for troubled economy

Chinese middle class now the world's largest

China must show 'will' to reform economy: US

World economic leaders tackle slow growth, climate change









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.