Medical and Hospital News  
CHIP TECH
Devil in the defect detail of quantum emissions unravelled
by Staff Writers
Sydney, Australia (SPX) Nov 03, 2020

stock image only

Systems which can emit a stream of single photons, referred to as quantum light sources, are critical hardware components for emerging technologies such as quantum computing, the quantum internet, and quantum communications.

In many cases the ability to generate quantum light on-demand requires the manipulation and control of single atoms or molecules, pushing the limit of modern fabrication techniques, and making the development of these systems a cross-disciplinary challenge.

In new research, published in Nature Materials, an international multidisciplinary collaboration led by the University of Technology Sydney (UTS), has uncovered the chemical structure behind defects in white graphene (hexagonal boron nitride, hBN), a two dimensional nanomaterial that shows great promise as a platform for generating quantum light.

The defects, or crystal imperfections, can act as single photon sources and an understanding of their chemical structure is critical to being able to fabricate them in a controlled way.

"hBN single photon emitters display outstanding optical properties, among the best from any solid state material system, however, to make practical use of them we need to understand the nature of the defect and we have finally started to unravel this riddle," says UTS PhD candidate Noah Mendelson and first author of the study.

"Unfortunately, we cannot simply combine powerful techniques to visualize single atoms directly with quantum optics measurements, so obtaining this structural information is very challenging. Instead we attacked this problem from a different angle, by controlling the incorporation of dopants, like carbon, into hBN during growth and then directly comparing the optical properties for each, " he said.

To realise this comprehensive study, the team, led by Professor Igor Aharonovich, chief investigator of the UTS node of the ARC Centre of Excellence for Transformative Meta-Optical Materials (TMOS), turned to collaborators in Australia and around the world to provide the array of samples needed.

The researchers were able to observe, for the first time, a direct link between carbon incorporation into the hBN lattice and quantum emission.

"Determining the structure of material defects is an incredibly challenging problem and requires experts from many disciplines. This is not something we could have done within our group alone. Only by teaming up with collaborators from across the world whose expertise lies in different materials growth techniques could we study this issue comprehensively. Working together were we finally able to provide the clarity needed for the research community as a whole," said Professor Aharonovich.

"It was particularly exciting as this study was enabled by the new collaborative efforts with collaborators Dipankar Chugh, Hark Hoe Tan and Chennupati Jagadish from the TMOS node at the Australian National University, " he said.

The scientists also identified another intriguing feature in their study, that the defects carry spin, a fundamental quantum mechanical property, and a key element to encode and retrieve quantum information stored on single photons.

"Confirming these defects carry spin opens up exciting possibilities for future quantum sensing applications, specifically with atomically thin materials." Professor Aharonovich said.

The work brings to the forefront a novel research field, 2D quantum spintronics, and lays the groundwork for further studies into quantum light emission from hBN. The authors anticipate their work will stimulate increased interest in the field and facilitate a range of follow up experiments such as the generation of entangled photon pairs from hBN, detailed studies of the spin properties of the system, and theoretical confirmation of the defect structure.

"This is just the beginning, and we anticipate our findings will accelerate the deployment of hBN quantum emitters for a range of emerging technologies," concludes Mr. Mendelson.

Research paper


Related Links
University Of Technology Sydney
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
A new spin on atoms gives scientists a closer look at quantum weirdness
Princeton NJ (SPX) Nov 02, 2020
When atoms get extremely close, they develop intriguing interactions that could be harnessed to create new generations of computing and other technologies. These interactions in the realm of quantum physics have proven difficult to study experimentally due the basic limitations of optical microscopes. Now a team of Princeton researchers, led by Jeff Thompson, an assistant professor of electrical engineering, has developed a new way to control and measure atoms that are so close together no optical ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
International Charter for disasters 20 years on

DLR robotic vehicles will support deliveries in difficult areas for the World Food Program

Landslide kills 11 miners in Indonesia

11 soldiers dead, 11 missing in Vietnam after second big landslide in days

CHIP TECH
China's self-developed BDS sees thriving applications

GPS-enabled decoy eggs may help track, catch sea turtle egg traffickers

Fourth GPS 3 Satellite Encapsulated Ahead of Launch

Government to explore new ways of delivering 'sat nav' for the UK

CHIP TECH
How'd we get so picky about friendship late in life? Ask the chimps

Cognitive elements of language have existed for 40 million years

Turbulent era sparked leap in human behavior, adaptability 320,000 years ago

Neural pathway crucial to successful rapid object recognition in primates

CHIP TECH
Vampire bats socially distance when they fall ill

Cameroon arrests ivory smugglers, seizes 118 elephant tusks

Accessible healthcare could slow climate change, reverse biodiversity losses

Workers eradicate first nest of 'murder hornets' found in US

CHIP TECH
'Made-in-Gaza' device fights coronavirus spread

Longer-lingering droplets are less efficient carriers of COVID-19 virus

Giving up on virus control 'dangerous': WHO chief

More mass testing in China after 137 virus cases in Xinjiang

CHIP TECH
Hong Kong teen activist Tony Chung charged with secession

Hong Kong teen activist arrested near US consulate

Bad faith: China's 'underground' Catholics wary of Vatican deal

US tightens rules on more Chinese media outlets

CHIP TECH
UK police given more time to hold tanker 'hijack' seven

Seven held for attempted hijacking off UK coast

Death toll rises to 11 in Colombia rioting over police killing

USS Detroit deployed for counternarcotics operations

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.