. Medical and Hospital News .




.
ENERGY TECH
Discovery may overcome obstacle for quantum computing
by Staff Writers
Vancouver, Canada (SPX) Jul 22, 2011

-

Researchers have made a major advance in predicting and quashing environmental decoherence, a phenomenon that has proven to be one of the most formidable obstacles standing in the way of quantum computing.

The findings - based on theoretical work conducted at the University of British Columbia and confirmed by experiments at the University of California Santa Barbara - are published online in the July 20 issue of the journal Nature.

Quantum mechanics states that matter can be in more than one physical state at the same time - like a coin simultaneously showing heads and tails. In small objects like electrons, physicists have had success in observing and controlling these simultaneous states, called "state superposition."

Larger, more complex physical systems appear to be in one consistent physical state because they interact and "entangle" with other objects in their environment. This entanglement makes these complex objects "decay" into a single state - a process called decoherence.

Quantum computing's potential to be exponentially faster and more powerful than any conventional computer technology depends on switches that are capable of state superposition - that is, being in the "on" and "off" positions at the same time. Until now, all efforts to achieve such superposition with many molecules at once were blocked by decoherence.

"For the first time we've been able to predict and control all the environmental decoherence mechanisms in a very complex system, in this case a large magnetic molecule called the 'Iron-8 molecule,'" said Phil Stamp, UBC professor of physics and astronomy and director of the Pacific Institute of Theoretical Physics.

"Our theory also predicted that we could suppress the decoherence, and push the decoherence rate in the experiment to levels far below the threshold necessary for quantum information processing, by applying high magnetic fields."

In the experiment, the California researchers prepared a crystalline array of Iron-8 molecules in a quantum superposition, where the net magnetization of each molecule was simultaneously oriented up and down. The decay of this superposition by decoherence was then observed in time - and the decay was spectacularly slow, behaving exactly as the UBC researchers predicted.

"Magnetic molecules now suddenly appear to have serious potential as candidates for quantum computing hardware," said Susumu Takahashi, assistant professor of chemistry and physics at the University of Southern California. "This opens up a whole new area of experimental investigation with sizeable potential in applications, as well as for fundamental work."

Takahashi conducted the experiments while at UC Santa Barbara and analyzed the data while at UC Santa Barbara and the University of Southern California.

"Decoherence helps bridge the quantum universe of the atom and the classical universe of the everyday objects we interact with," Stamp said. "Our ability to understand everything from the atom to the Big Bang depends on understanding decoherence, and advances in quantum computing depend on our ability to control it."




Related Links
University of British Columbia
Powering The World in the 21st Century at Energy-Daily.com

.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries






. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



ENERGY TECH
New Mathematical Framework That Could Help Convert "Junk" Energy Into Useful Power
Buffalo NY (SPX) Jul 22, 2011
A University at Buffalo-led research team has developed a mathematical framework that could one day form the basis of technologies that turn road vibrations, airport runway noise and other "junk" energy into useful power. The concept all begins with a granular system comprising a chain of equal-sized particles - spheres, for instance - that touch one another. In a paper in Physical R ... read more


ENERGY TECH
Japan eyes $291 bln for reconstruction: reports

Japan names more Fukushima evacuation areas

Japan's lower house approves 2nd recovery budget

Efforts to stabilise nuclear crisis on track - Japan

ENERGY TECH
Cambridge Pixel, Navtech to work together

Second Boeing GPS IIF Satellite Sends First Signals from Space

Boeing: 2nd Boeing GPS IIF Satellite Ready for Launch from Cape Canaveral

Apple makes first S. Korea payout over tracking

ENERGY TECH
Brain's 'clock' less accurate with aging

New material could offer hope to those with no voice

Dhaka and Delhi launch census in enclaves

Cracking the Code of the Mind

ENERGY TECH
Editing the genome: rewriting the code of life

Kenya burns five tonnes of ivory

Loss of top animal predators has massive ecological effects

New elegant technique used for genomic archaeology

ENERGY TECH
Swaziland AIDS activists march for drugs

'Swine flu' breath test could reduce future vaccination shortages

AIDS: Science has delivered on HIV prevention. Now what?

Reservoir dogs: Scientists aim at HIV's last holdout

ENERGY TECH
China stands firm against Tibet separatism

China tells Tibet monks to 'break with separatists'

Clash in China's Xinjiang killed 20: exile group

China vows to crush stability threats in Tibet

ENERGY TECH
Denmark to hand over 24 pirates to Kenya for trial

Chinese ship released by pirates: EU

South Korea jails Somali pirates

US Navy recruits gamers to help in piracy strategy

ENERGY TECH
Doubts remain over Greek debt rescue

Walker's World: Euro's bigger Bandaid

IMF: Food, fuel prices inhibit C. America

Cracks appear in China's economic model: analysts


Memory Foam Mattress Review
Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement