Subscribe free to our newsletters via your
. Medical and Hospital News .




FLORA AND FAUNA
Discovery opens up new areas of microbiology, evolutionary biology
by Staff Writers
Blacksburg VA (SPX) Feb 12, 2014


To begin their study, the team investigated an ancient type of methanogen, Methanocaldococcus jannaschii, which lives in deep-sea hydrothermal vents or volcanoes where environmental conditions mimic those that existed on the early Earth. They found that the protein thioredoxin, which plays a major role in contemporary photosynthesis, could repair many of the organism's proteins damaged by oxygen.

A team of researchers led by Virginia Tech and University of California, Berkeley, scientists has discovered that a regulatory process that turns on photosynthesis in plants at daybreak likely developed on Earth in ancient microbes 2.5 billion years ago, long before oxygen became available.

The research opens new scientific areas in the fields of evolutionary biology and microbiology. The work also has broad societal implications as it allows scientists to better understand the production of natural gas, and it sheds light on climate change, agriculture, and human health.

"By looking at this one mechanism that was not previously studied, we will be able to develop new basic information that potentially has broad impact on contemporary issues ranging from climate change to obesity," said Biswarup Mukhopadhyay, associate professor of biochemistry at the Virginia Tech College of Agriculture and Life Sciences, one of the lead authors of the study.

He is also an adjunct associate professor at the Virginia Bioinformatics Institute. Plant and microbial University of California, Berkeley biology professor emeritus Bob B. Buchanan co-led the research and co-authored the paper.

The findings were described in the journal the Proceedings of the National Academy of Sciences. This research concerns methane-forming archaea, a group of methane-producing microbes known as methanogens that live in areas of nature where oxygen is absent. Methane is the main component of natural gas as well as a potent greenhouse gas.

"This innovative work demonstrates the importance of a new global regulatory system in methanogens," said William Whitman, a professor of microbiology at the University of Georgia who is familiar with the study but not connected to it. "Understanding this system will provide the tools to use these economically important microorganisms better."

Methanogens play a key role in nature, most notably in carbon cycling. When plants die, some of their biomass is trapped in areas that are devoid of oxygen such as the bottom of lakes. Methanogens are critical in converting the residual biological material to methane, which other organisms convert to carbon dioxide - a product that can be used by plants.

This natural process for producing methane forms the basis for treating municipal and industrial wastes. These processes are beneficial both in reducing pollution and in producing methane that can be trapped and used as a fuel. The same process allows natural gas production from agricultural residues, a renewable resource.

Methanogens also play an important role in agriculture and human health. They live in the digestive systems of cattle and sheep where they facilitate the digestion of feed consumed in the diet. There have been efforts to control methanogens in specific ways that would improve feed utilization and enhance the production of meat and milk.

Methanogens are additionally a factor in human nutrition. The organisms live in the large intestine, where they enhance the breakdown of food. Some have proposed that restricting this activity of methanogens could help alleviate obesity.

To begin their study, the team investigated an ancient type of methanogen, Methanocaldococcus jannaschii, which lives in deep-sea hydrothermal vents or volcanoes where environmental conditions mimic those that existed on the early Earth.

They found that the protein thioredoxin, which plays a major role in contemporary photosynthesis, could repair many of the organism's proteins damaged by oxygen.

Since methanogens developed before oxygen appeared on earth, the evidence raises the possibility that thioredoxin-based metabolic regulation could have come into play for managing anaerobic life long before the advent of oxygen.

"It is rewarding to see that our decades of research on thioredoxin and photosynthesis are contributing to understanding the ancient process of methane formation," Buchanan said. "It is an excellent illustration of how a process that proved successful early in evolution has been retained in the development of highly complex forms of life."

.


Related Links
Virginia Tech
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








FLORA AND FAUNA
New plant species a microcosm of biodiversity
Washington DC (SPX) Feb 11, 2014
Biologists working in the Andes mountains of Ecuador have described a new plant species, a wild relative of black pepper, that is in itself a mini biodiversity hotspot. The new species, Piper kelleyi, is the sole home of an estimated 40-50 insect species, most of which are entirely dependent on this plant species for survival. This discovery is part of a larger project which focuses on the ... read more


FLORA AND FAUNA
New Zealand takes delivery of General Dynamics mobile bridges

As battle rages around historic castle, Syria's heritage faces ruin

British princes help out as storm claims two lives

165,000 without power in storm-battered Ireland

FLORA AND FAUNA
Sochi Olympic transport controlled from space using GLONASS satellite

Galileo works, and works well

Russia to deploy up to 7 Glonass ground stations outside of national territory in 2014

Northrop Grumman Awarded U.S. Military Contract for Navigation Systems

FLORA AND FAUNA
Mobile apps shake up world of dating

For new study, 100 people commit their bodies to science

Population bomb may be defused, but research reveals ticking household bomb

The genetic origins of high-altitude adaptations in Tibetans

FLORA AND FAUNA
Discovery opens up new areas of microbiology, evolutionary biology

New application of physics tools used in biology

London wildlife summit moves to choke off illegal markets

Bopping to the beat is a rare feat in animals

FLORA AND FAUNA
Boy becomes Cambodia's first bird flu death of year

January worst month in China's human H7N9 outbreak: govt

Vietnam reports second bird flu death in 2014

Chinese scientists sound warning over new bird flu

FLORA AND FAUNA
Microsoft's Bing accused of Chinese-language censorship

China to provide more baby safe havens

Chinese bloggers press Kerry on Internet freedom

Daredevils scale world's second tallest building in China

FLORA AND FAUNA
French navy arrests pirates suspected of oil tanker attack

Mexican vigilantes accuse army of killing four

Gunmen kill two soldiers in troubled Mexican state

China smugglers dig tunnel into Hong Kong: media

FLORA AND FAUNA
Walker's World: Is this a recovery yet?

China $160 mln investment vehicle misses payments: report

China bank lending surges in January

Pernod Ricard says knocked back by sales drop in China




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.