. Medical and Hospital News .




ENERGY TECH
Dopants dramatically alter electronic structure of superconductor
by Staff Writers
Upton, NY (SPX) Feb 22, 2013


File image: Dopant.

Over the last quarter century, scientists have discovered a handful of materials that can be converted from magnetic insulators or metals into "superconductors" able to carry electrical current with no energy loss-an enormously promising idea for new types of zero-resistance electronics and energy-storage and transmission systems.

At present, a key step to achieving superconductivity (in addition to keeping the materials very cold) is to substitute a different kind of atom into some positions of the "parent" material's crystal framework.

Until now, scientists thought this process, called doping, simply added more electrons or other charge carriers, thereby rendering the electronic environment more conducive to the formation of electron pairs that could move with no energy loss if the material is held at a certain chilly temperature.

Now, new studies of an iron-based superconductor by an international team of scientists - including physicists from the U.S. Department of Energy's Brookhaven National Laboratory and Cornell University - suggest that the story is somewhat more complicated. Their research, published online in Nature Physics February 17, 2013, demonstrates that doping, in addition to adding electrons, dramatically alters the atomic-scale electronic structure of the parent material, with important consequences for the behavior of the current-carrying electrons.

"The key observation - that dopant atoms introduce elongated impurity states which scatter electrons in the material in an asymmetric way - helps explain most of the unusual properties," said J.C. Seamus Davis, the study's lead author, who directs the Center for Emergent Superconductivity at Brookhaven Lab and is also the J.G. White Distinguished Professor of Physical Sciences at Cornell University.

"Our findings provide a new starting point for theorists trying to grapple with how these materials work, and could potentially point to new ways to design superconductors with improved properties," he said.

The researchers used a technique developed by Davis called spectroscopic imaging scanning tunneling microscopy to visualize the electronic properties around individual dopant atoms in the parent material, and to simultaneously monitor how electrons scatter around these dopants (in this case, cobalt).

Earlier studies had shown that certain electronic properties of the non-superconducting "parent" material had a strong directional dependence - for example, electrons were able to move more easily in one direction through the crystal than in the perpendicular direction. However, in those studies, the signal of a strong directional dependence only appeared when the scientists put the dopants into the material, and got stronger the more dopants they added.

Before this, the assumption was that dopants simply added electrons, and that the material's properties - including the emergence of superconductivity - were due to some intrinsic characteristic (for example, the alternating alignments of electron spins on adjacent atoms) that resulted in a directional dependence.

"But the emergence of directional dependence of electronic properties as more dopants are added suggests that the strong directionality is a result of the dopants, not an intrinsic property of the material," Davis said. "We decided to test this idea by directly imaging what each dopant atom does to the nearby atomic-level electronic structure in these materials."

According to Davis, the current paper reports two very clear results:

1) At each cobalt dopant atom, there is an elongated impurity state-a quantum mechanical state bound to the cobalt atom-that aligns in a particular direction (the same for each cobalt atom) relative to the overall crystal. 2) These oblong, aligned impurity states scatter the current-carrying electrons away from the impurity state in an asymmetric way - similar to the way ripples of water would propagate asymmetrically outward from an elongated stick thrown into a pond, rather than forming the circular pattern produced by a pebble.

"These direct observational findings explain most of the outstanding mysteries about how the electrical current moves through these materials - for example, with greater ease perpendicular to the direction you would expect based solely on the characteristics of the parent material," Davis said. "The results show that the dopants actually do dramatic things to the electronic structure of the parent material."

"It's possible that what we've found could be similar to an effect dopants had on early semiconductors," Davis said. "Early versions of these materials, though useful, had nowhere near the performance as those developed after the 1970s, when scientists at Bell Labs figured out a way to move the dopant atoms far away from the electrons so they wouldn't mess up the electronic structure." That advance made possible all the microelectronics we now use every day, including cell phones, he said.

"If we find out the dopant atoms are doing something we don't want in the iron and even copper superconductors, maybe we can find a way to move them away from the active electrons to make more useful materials."

.


Related Links
Brookhaven National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

Get Our Free Newsletters
Space - Defense - Environment - Energy - Solar - Nuclear

...





ENERGY TECH
Quantum Dot Harvester Turns Waste Heat Into Electricity At The Nanoscale
Rochester NY (SPX) Feb 19, 2013
A new type of nanoscale engine has been proposed that would use quantum dots to generate electricity from waste heat, potentially making microcircuits more efficient. "The system is really a simple one, which exploits certain properties of quantum dots to harvest heat," Professor Andrew Jordan of the University of Rochester said. "Despite this simplicity, the power it could generate is sti ... read more


ENERGY TECH
British PM sparks concern with aid budget proposals

Swiss Re posts 61% profit rise in 2012

Four guilty of manslaughter in Italy quake trial

Warning of emergency alert system hacks

ENERGY TECH
Telit Offers COMBO 2G Chip For Multi Satellite Positioning Receiver

Boeing Awarded USAF Contract to Continue GPS Modernization

A system that improves the precision of GPS in cities by 90 percent

System improves GPS in city locations

ENERGY TECH
Zuckerberg, Brin join forces to extend life

Thick hair mutation emerged 30,000 years ago in humans

Tiny mutation had big evolutionary impact

Bilingual babies get good at grammar

ENERGY TECH
Activists want ivory sanctions on Thailand, others

2012 another deadly year for elephants in Africa: CITES

X-ray laser sees photosynthesis in action

Python hunt in Everglades nets just 68: organizers

ENERGY TECH
China reports year's second fatal case of bird flu

Text messages help cholera fight in Mozambique

Humans and chimps share genetic strategy in battle against pathogens

Cold resistance runs in genes

ENERGY TECH
Chinese villagers told to flatten tombs: reports

Tibetan teens in rare double immolation: reports

US slams 'horrific' toll of Tibet self-immolations

Tibetan monk's burning marks 100th immolation bid

ENERGY TECH
Ukraine to join NATO anti-piracy mission

16 gunmen killed in Thai military base attack: army

Japan police arrest mobster in Fukushima clean-up

Mexico scrambles to stem violence near capital

ENERGY TECH
London elbows out HK for pricey offices, as Rio rises

Argentine inflation up, presaging hardship

China holiday retail sales jump 15%: government

EU financial transaction tax divides union




The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement