Medical and Hospital News  
CHIP TECH
EPFL uses excitons to take electronics into the future
by Staff Writers
Lausanne, Switzerland (SPX) Jul 30, 2018

file illustration only

Excitons could revolutionize the way engineers approach electronics. A team of EPFL researchers has created a new type of transistor - one of the components of circuits - using these particles instead of electrons. What is remarkable is that their exciton-based transistor functions effectively at room temperature, a hitherto insurmountable obstacle.

They achieved this by using two 2D materials as semiconductors. Their study, which was published today in Nature, has numerous implications in the field of excitonics, one of the most promising new areas of study alongside photonics and spintronics.

"Our research showed that, by manipulating excitons, we had come upon a whole new approach to electronics," says Andras Kis, who heads EPFL's Laboratory of Nanoscale Electronics and Structures (LANES). "We are witnessing the emergence of a totally new field of study, the full scope of which we don't yet know."

This breakthrough sets the stage for optoelectronic devices that consume less energy and are both smaller and faster than current devices. In addition, it will be possible to integrate optical transmission and electronic data-processing systems into the same device, which will reduce the number of operations needed and make the systems more efficient.

Higher energy level
Excitons are actually quasiparticles, a term used to describe the interaction between the particles that make up a given substance rather than the substance itself. Excitons consist of an electron and an electron hole.

The two are bound together when the electron absorbs a photon and achieves a higher level of energy; the "excited" electron leaves behind a hole in the previous level of energy, which, in band theory, is called a valence band. This hole, also a quasiparticle, is an indication of the missing electron in this band.

Since the electron is negatively charged and the hole is positively charged, the two particles remain bound by an electrostatic force. This bond between the electron and the hole is called Coulomb attraction.

And it is in this state of tension and balance that they form an exciton. When the electron finally falls back into the hole, it emits a photon. And with that, the exciton ceases to exist. Put more simply, a photon goes in at one end of the circuit and comes out the other; while inside, it gives rise to an exciton that acts like a particle.

Double success
It is only recently that researchers have begun looking at the properties of excitons in the context of electronic circuits. The energy in excitons had always been considered too fragile and the excitons' life span too short to be of any real interest in this domain. In addition, excitons could only be produced and controlled in circuits at extremely low temperatures (around -173C).

The breakthrough came when the EPFL researchers* discovered how to control the life span of the excitons and how to move them around. They did this by using two 2D materials: tungsten diselenide (WSe2) and molybdenum disulfide (MoS2).

"The excitons in these materials exhibit a particularly strong electrostatic bond and, even more importantly, they are not quickly destroyed at room temperature," explains Kis.

The researchers were also able to significantly lengthen the excitons' life span by using the fact that the electrons always found their way to the MoS2 while the holes always ended up in the WSe2. And, working with two Japanese researchers**, they kept the excitons going even longer by protecting the semiconductor layers with boron nitride (BN).

"We created a special type of exciton, where the two sides are farther apart than in the conventional particle," says the researcher. "This delays the process in which the electron returns to the hole and light is produced. It's at this point, when the excitons remain in dipole form for slightly longer, that they can be controlled and moved around using an electric field."

Research paper


Related Links
Ecole Polytechnique Federale de Lausanne
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Electrical contact to molecules in semiconductor structures established for the first time
Basel, Switzerland (SPX) Jul 25, 2018
Electrical circuits are constantly being scaled down and extended with specific functions. A new method now allows electrical contact to be established with simple molecules on a conventional silicon chip. The technique promises to bring advances in sensor technology and medicine, as reported in the journal Nature by chemists from the University of Basel and researchers from IBM Research - Zurich in Ruschlikon. To further develop semiconductor technology, the field of molecular electronics is seek ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Developing Microrobotics for Disaster Recovery and High-Risk Environments

Spanish rescue ship heads home after dramatic rescue

Japan firms used foreign trainees at Fukushima cleanup

'Jet engine' sound, tremors send Afghan villagers fleeing deadly landslide

CHIP TECH
Europe's next Galileo satellites in place atop Ariane 5

CTSi flight tests prototype navigation system to replace GPS in highly contested environments for US Navy

Love navigated by Beidou

Next four Galileo satellites fuelled for launch

CHIP TECH
Last survivor of Brazil tribe under threat: NGO

More than a quarter of the globe is controlled by indigenous groups

Eating bone marrow played a key role in the evolution of the human hand

Primates adjust grooming to their social environment

CHIP TECH
Nature's antifreeze inspires revolutionary bacteria cryopreservation technique

US proposes roll back of endangered species protections

Cyprus clifftop villas raise fears for endangered seals

Ninth rhino dead after failed move to new park in Kenya

CHIP TECH
Chinese president calls latest pharma scare "vile"

Censors jump into action as China's latest vaccine scandal ignites

Help NASA Track and Predict Mosquito-Borne Disease Outbreaks

Spot a rat? Real-time map aims to plot Paris sightings

CHIP TECH
Ten jailed in Vietnam over violent anti-China demos

Hong Kong academics warn of 'political battleground' at universities

Hong Kong police seek landmark ban on pro-independence party

Hong Kong activists mark one year since Liu Xiaobo death

CHIP TECH
Three Mexican soldiers killed in ambush

CHIP TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.