Medical and Hospital News  
ROBO SPACE
Electronic synapses that can learn: towards an artificial brain?
by Staff Writers
Paris (SPX) Apr 04, 2017


Artist's impression of the electronic synapse: the particles represent electrons circulating through oxide, by analogy with neurotransmitters in biological synapses. The flow of electrons depends on the oxide's ferroelectric domain structure, which is controlled by electric voltage pulses. Image courtesy Soren Boyn / CNRS/Thales physics joint research unit.

Researchers from the CNRS, Thales, and the Universities of Bordeaux, Paris-Sud, and Evry have created an artificial synapse capable of learning autonomously. They were also able to model the device, which is essential for developing more complex circuits. The research was published in Nature Communications on 3 April 2017.

One of the goals of biomimetics is to take inspiration from the functioning of the brain in order to design increasingly intelligent machines. This principle is already at work in information technology, in the form of the algorithms used for completing certain tasks, such as image recognition; this, for instance, is what Facebook uses to identify photos. However, the procedure consumes a lot of energy.

Vincent Garcia (Unite mixte de physique CNRS/Thales) and his colleagues have just taken a step forward in this area by creating directly on a chip an artificial synapse that is capable of learning. They have also developed a physical model that explains this learning capacity. This discovery opens the way to creating a network of synapses and hence intelligent systems requiring less time and energy.

Our brain's learning process is linked to our synapses, which serve as connections between our neurons. The more the synapse is stimulated, the more the connection is reinforced and learning improved. Researchers took inspiration from this mechanism to design an artificial synapse, called a memristor.

This electronic nanocomponent consists of a thin ferroelectric layer sandwiched between two electrodes, and whose resistance can be tuned using voltage pulses similar to those in neurons. If the resistance is low the synaptic connection will be strong, and if the resistance is high the connection will be weak. This capacity to adapt its resistance enables the synapse to learn.

Although research focusing on these artificial synapses is central to the concerns of many laboratories, the functioning of these devices remained largely unknown. The researchers have succeeded, for the first time, in developing a physical model able to predict how they function. This understanding of the process will make it possible to create more complex systems, such as a series of artificial neurons interconnected by these memristors.

As part of the ULPEC H2020 European project, this discovery will be used for real-time shape recognition using an innovative camera1 : the pixels remain inactive, except when they see a change in the angle of vision. The data processing procedure will require less energy, and will take less time to detect the selected objects.

The research involved teams from the CNRS/Thales physics joint research unit, the Laboratoire de l'integration du materiau au systeme (CNRS/Universite de Bordeaux/Bordeaux INP), the University of Arkansas (US), the Centre de nanosciences et nanotechnologies (CNRS/Universite Paris-Sud), the Universite d'Evry, and Thales.

Research paper: Learning through ferroelectric domain dynamics in solid-state synapses. Soren Boyn, Julie Grollier, Gwendal Lecerf, Bin Xu, Nicolas Locatelli, Stephane Fusil, Stephanie Girod, Cecile Carretero, Karin Garcia, Stephane Xavier, Jean Tomas, Laurent Bellaiche, Manuel Bibes, Agnes Barthelemy, Sylvain Saighi, Vincent Garcia. Nature communications, 3 April 2017. DOI : 10.1038/NCOMMS14736

ROBO SPACE
Robot epigenetics: Adding complexity to embodied robot evolution
Washington DC (SPX) Apr 04, 2017
Evolutionary robotics is a new exciting area of research which draws on Darwinian evolutionary principles to automatically develop autonomous robots. In a new research article published in Frontiers in Robotics and AI, researchers add more complexity to the field by demonstrating for the first time that just like in biological evolution, embodied robot evolution is impacted by epigenetic factors ... read more

Related Links
CNRS
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Birds hit by cars are, well, bird-brained

Mosul humanitarian crisis deepens as displacement peaks

Colombia opens probe into deadly landslide

Why is South America being hit by deadly landslides?

ROBO SPACE
China's BeiDou system to expand cooperation to SE Asia

ISRO Beams in Private Firm to Make Two Satellites for Navigation

Satnavs 'switch off' parts of the brain

Technology can reduce GPS outages from Northern Lights, researchers say

ROBO SPACE
Married couples with shared ancestry tend to have similar genes

Researchers uncover prehistoric art and ornaments from Indonesian 'Ice Age'

Great apes know when people are wrong: study

Parallel computation provides deeper insight into brain function

ROBO SPACE
Nepal to relocate five rare one-horned rhinos

Testing effects of 'noise' on the decision-making abilities of slime mold

Research shows global photosynthesis on the rise

Biochar provides high-definition electron pathways in soil

ROBO SPACE
Scientists image one of the largest viruses on the planet

Transgenic plants against malaria

Thousands of monkeys are dying from yellow fever in Brazil

UN body urges China to act as bird flu deaths spike

ROBO SPACE
US authorities bust visa fraud scheme for wealthy Chinese

Hong Kong anti-graft body arrests 72 over vote-rigging

Billionaire Warren Buffet becomes face of Coke in China

Warhol Mao portrait fetches $12.7m in Hong Kong auction

ROBO SPACE
Philippines seeks US, China help to combat sea pirates

ROBO SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.