Medical and Hospital News  
NANO TECH
Electronically connected graphene nanoribbons foresee high-speed electronics
by Staff Writers
Sendai, Japan (SPX) Jan 14, 2016


Figure 1 shows interconnected graphene nanoribbons (GNRs). The interconnection points are observed as elbow structures. The inset of (a) shows the chemical structure of an elbow interconnection point of two chiral-edge GNRs. The top panel of (b) shows the scanning tunneling microscopy topograph, highlighting a single GNR and a pair of connected GNRs (elbow). The bottom panel of (b) shows the local density of states (LDOS) of these two structures share the same electronic architecture, including the elbow interconnection point. This indicates that electronic properties, such as electron and thermal conductivities, should be comparable between termini 1-2 and termini 3-4.

An international research team at Tohoku University's Advanced Institute of Materials Research (AIMR) succeeded in chemically interconnecting chiral-edge graphene nanoribbons (GNRs) with zigzag-edge features by molecular assembly, and demonstrated electronic connection between GNRs. The GNRs were interconnected exclusively end to end, forming elbow structures, identified as interconnection points (Fig. 1a).

This configuration enabled researchers to demonstrate that the electronic architecture at the interconnection points between two GNRs (Fig. 1b) is the same as that along single GNRs; evidence that GNR electronic properties, such as electron and thermal conductivities, are directly extended through the elbow structures upon chemical GNR interconnection.

This work shows that future development of high-performance, low-power-consumption electronics based on GNRs is possible.

Graphene has long been expected to revolutionize electronics, provided that it can be cut into atomically precise shapes that are connected to desired electrodes. However, while current bottom-up fabrication methods can control graphene's electronic properties, such as high electron mobility, tailored band gaps and s pin-aligned zigzag edges, the connection aspect of graphene structures has never been directly explored.

For example, whether electrons traveling across the interconnection points of two GNRs would encounter higher electric resistance remains an open question. As the answers to this type of questions are crucial towards the realization of future high-speed, low-power-consumption electronics, we use molecular assembly to address this issue here.

"Current molecular assemblies either produce straight GNRs (i.e., without identifiable interconnection points), or randomly interconnected GNRs," says Dr. Patrick Han, the project leader. "These growth modes have too many intrinsic unknowns for determining whether electrons travel across graphene interconnection points smoothly. The key is to design a molecular assembly that produces GNRs that are systematically interconnected with clearly distinguishable interconnection points."

To reach this goal, the AIMR team used a Cu substrate, whose reactivity confines the GNR growth to six directions, and used scanning tunneling microscopy (STM) to visualize the GNR electronic structures. By controlling the precursor molecular coverage, this molecular assembly connects GNRs from different growth directions systematically end to end, producing elbow structures--identified as interconnection points.

Using STM, the AIMR team revealed that the delocalization of the interconnected GNR p*-states extends the same way both across a single straight GNR, and across the interconnection point of two GNRs (periodic features in Fig. 1b, bottom panel). This result indicates that GNR electronic properties, such as electron and thermal conductivities, should be the same at the termini of single GNRs and that of two connected GNRs.

"The major finding of this work is that interconnected GNRs do not show electronic disruption (e.g., electron localization that increases resistance at the interconnection points)," says Han.

"The electronically smooth interconnection demonstrates that GNR properties (including tailored band gaps, or even spin-aligned zigzag edges) can be connected to other graphene structures. These results show that finding a way to connect defect-free GNRs to desired electrodes may be the key strategy toward achieving high-performance, low-power-consumption electronics."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Advanced Institute for Materials Research at Tohoku
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
New approach for controlled fabrication of carbon nanostructures
Quebec City, Canada (SPX) Jan 07, 2016
An international team of researchers including Professor Federico Rosei and members of his group at INRS has developed a new strategy for fabricating atomically controlled carbon nanostructures used in molecular carbon-based electronics. An article just published in the prestigious journal Nature Communications presents their findings: the complete electronic structure of a conjugated orga ... read more


NANO TECH
PTSD nation? US shootings inflict growing mental toll

Obama set to hold town hall meeting on gun control

Natural catastrophe losses total $90 bn in 2015: Munich Re

Bus passengers airlifted as Scotland bears floods brunt

NANO TECH
Europe's first decade of navigation satellites

Indra will deploy navigation aid systems in 20 Chinese airports

China builds ground service center for satnav system

Galileo's dozen: 12 satellites now in orbit

NANO TECH
Mental synthesis experiment could teach us more about our imagination

Why the real King Kong became extinct

Carnegie Mellon develops new method for analyzing synaptic density

Genomes of early Irish settlers sequenced

NANO TECH
Gradual environmental change delays evolution, adaptation

Australian giant monitor lizards trained to avoid eating toxic toads

Florida Indian tribe's last alligator wrestler bows out

The origins of abiotic species

NANO TECH
UGA ecologist finds another cause of antibiotic resistance

Ebola: Timeline of an epidemic

US and Mexico must work to prevent mosquito-transmitted epidemics

Drug firm announces advance in quest for HIV cure

NANO TECH
Hong Kong bookseller disappearances cut deep into freedom fears

EU: Hong Kong bookseller disappearances 'extremely worrying'

Missing Hong Kong bookseller is British citizen: UK

Patriotic fizz around return of China's favourite '80s cola

NANO TECH
Two Mexican marines, suspect killed in shootout

U.S., U.K. help build West African partners' anti-piracy capabilities

Villagers recall fear as troops fired in 'Chapo' raid

NANO TECH
Banks' borrowing rate for yuan in Hong Kong hits record

Chinese economy stable: ADB president

Weak world markets signal fresh global crisis: Soros

China December forex fall largest ever seen









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.