Medical and Hospital News  
TIME AND SPACE
Electrons take one step forward without two steps back
by Staff Writers
Riverside CA (SPX) Jun 11, 2018

file illustration only

Researchers at the University of California, Riverside, have, for the first time, successfully used electric dipoles to completely suppress electron transfer in one direction while accelerating in the other. The discovery could aid development of improved solar cells and other energy-conversion devices and hasten the design of new and superb energy and electronic materials.

It is not a stretch to say that life depends on strictly regulated electron transfer.

Electron transfer is among the most fundamental processes for sustaining life and for energy conversion. It occurs when an electron moves from one atom or molecule to another, bringing its electrical energy with it. Photosynthesis, mitochondrial and cellular respiration, and nitrogen fixation are among the many biological processes made possible by the orderly movement of electrons.

Because electron transfer is both ubiquitous and important, scientists have invested enormous efforts into understanding the process, and used what they learned to create solar cells, fuel cells, batteries and many other devices that also depend on efficient electron transfer.

But the delicate electron ballet in living things choreographed through eons of evolution is more like stage diving into a mosh pit when applied to human-created technologies.

Scientists can control electron transfer to some extent, but have difficulty herding all the subatomic particles into a single direction. When they direct electrons forward, inevitably, some move backward as well, causing a loss of energy.

Valentine Vullev, a professor of bioengineering in the Bourns College of Engineering, led an international team of researchers from UC Riverside, Poland, the Czech Republic, and Japan that used molecular dipoles to harness electron transfer.

Molecular dipoles occur when one of the atoms in a molecule has a composition that is more likely to attract electrons, which have a negative electrical charge. Molecular dipoles are everywhere and have powerful, nanoscale electrical fields that can guide desired electron transfer processes and suppress undesired ones.

While electric dipoles generate enormous fields around them the strength of the electric fields decreases fast with distance. Therefore, it is essential to place the dipole as close as possible to the electron transfer molecules.

Vullev's group incorporated the dipole within the electron donor molecule, 5-N-amido-anthranilamide electret, a substance with a semi-permanent electric charge and dipole polarization, similar to a magnet. The researchers exposed the electret to different solvents to trigger electron transfer. With low-polarity solvents they considerably enhanced the effect of the dipoles and guided all the electrons in just one direction.

This is the first time that scientists have shown that the dipole accelerates electron transfer in one direction and completely suppresses it in the other.

"This discovery opens doors for guiding forward electron transfer processes, while suppressing undesired backward electron transduction, which is one of the holy grails of photophysics and energy science," Vullev said.

The key lay in striking a fine balance between lowering the solvent's polarity to enhance the dipole effect without killing electron transfer all together. Custom-designed molecular components with the right electronic properties helped optimize this balance.

"While it appears that we are solving an important physical chemistry and physics problem, the findings from our work can have broad interdisciplinary impacts, and prove important for pertinent fields, such as molecular biology, cell physiology, and energy science and engineering," said Vullev.

"A better understanding of electron transfer at the molecular level will improve our understanding of living systems and serve as a foundation for efficient energy technologies."

Research Report: "Dipole Effects on Electron Transfer are Enormous"


Related Links
University of California - Riverside
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
'Spooky action at a distance': Researchers develop module for quantum repeater
Saarland, Germany (SPX) Jun 11, 2018
Communication using quantum states offers ultimate security, because eavesdropping attempts perturb the signal and would therefore not remain undetected. For the same reason, though, long-distance transmission of that information is difficult. In classical telecommunication, the increasing attenuation of the signal is counteracted by measuring, amplifying and re-sending it in so-called repeater stations, but this turns out to be as detrimental to the quantum information as an eavesdropper. T ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Merkel open to EU migration reform, Spain takes in stranded migrant ship

Puerto Rico morgue overflowing with unclaimed bodies

First public forecasts from ViEWS, a political violence early-warning system

$3bn pledged for girls education at G7, delighting Malala

TIME AND SPACE
Woman drowns in Prague drains playing GPS treasure hunt

What exclusion from Galileo could mean for UK

GMV competing to develop the Galileo Ground Control Segment in brand new premises

Research shows how 'navigational hazards' in metro maps confuse travelers

TIME AND SPACE
Monkeys eat fats and carbs to keep warm

Bonobos won't eat filthy food, offering clues to the origins of disgust

Easter Islanders used ropes, ramps to place hats on famed statues

This monkey can plan out their foraging routes just like a human

TIME AND SPACE
Adding herbs to bird nests makes starlings better parents

Malaysia seizes over 600 protected animals

Nucleus of the cell mapped in 3D

Bees understand nothing; first insect to comprehend zero

TIME AND SPACE
Spot a rat? Real-time map aims to plot Paris sightings

US fears of 'mystery weapon' revived by new China diplomat cases

Dialing up the body's defenses against public health threats

Limiting global warming could avoid millions of dengue fever cases

TIME AND SPACE
Hong Kong jails top independence leader for six years

China enlists public to track fugitives in US, Canada

Rewriting history? Hong Kong education turns political battleground

Costly date: 64.89 yuan forbidden on Tiananmen June 4 anniversary

TIME AND SPACE
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

S. Korea deploys warship to Ghana after pirates kidnap sailors

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.