Medical and Hospital News  
TIME AND SPACE
Evidence for a new property of quantum matter revealed
by Staff Writers
Baltimore MD (SPX) Jun 19, 2018

illustration only

A theorized but never-before detected property of quantum matter has now been spotted in the lab, a team of scientists reports.

The team proved that a particular quantum material can demonstrate electrical dipole fluctuations - irregular oscillations of tiny charged poles on the material - even in extremely cold conditions, in the neighborhood of minus 450 degrees Fahrenheit.

The material, first synthesized 20 years ago, is called k-(BEDT-TTF)2Hg(SCN)2 Br. It is derived from organic compounds, but behaves like a metal.

"What we found with this particular quantum material is that, even at super-cold temperatures, electrical dipoles are still present and fluctuate according to the laws of quantum mechanics," said Natalia Drichko, associate research professor in physics at the Johns Hopkins University.

"Usually, we think of quantum mechanics as a theory of small things, like atoms, but here we observe that the whole crystal is behaving quantum-mechanically," said Drichko, senior author of a paper on the research published in the journal Science.

Classical physics describes most of the behavior of physical objects we see and experience in everyday life. In classical physics, objects freeze at extremely low temperatures, Drichko said. In quantum physics - science that has grown up primarily to describe the behavior of matter and energy at the atomic level and smaller - there is motion even at those frigid temperatures, Drichko said.

"That's one of the major differences between classical and quantum physics that condensed matter physicists are exploring," she said.

An electrical dipole is a pair of equal but oppositely charged poles separated by some distance. Such dipoles can, for instance, allow a hair to "stick" to a comb through the exchange of static electricity: Tiny dipoles form on the edge of the comb and the edge of the hair.

Drichko's research team observed the new extreme-low-temperature electrical state of the quantum matter in Drichko's Raman spectroscopy lab, where the key work was done by graduate student Nora Hassan. Team members shined focused light on a small crystal of the material. Employing techniques from other disciplines, including chemistry and biology, they found proof of the dipole fluctuations.

The study was possible because of the team's home-built, custom-engineered spectrometer, which increased the sensitivity of the measurements 100 times.

The unique quantum effect the team found could potentially be used in quantum computing, a type of computing in which information is captured and stored in ways that take advantage of the quantum states of matter.

Research paper


Related Links
Johns Hopkins University
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
'Spooky action at a distance': Researchers develop module for quantum repeater
Saarland, Germany (SPX) Jun 11, 2018
Communication using quantum states offers ultimate security, because eavesdropping attempts perturb the signal and would therefore not remain undetected. For the same reason, though, long-distance transmission of that information is difficult. In classical telecommunication, the increasing attenuation of the signal is counteracted by measuring, amplifying and re-sending it in so-called repeater stations, but this turns out to be as detrimental to the quantum information as an eavesdropper. T ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Four US states refuse to deploy National Guard to border amid outcry

Economic optimization risks tipping of Earth system elements

Embry-Riddle researchers seek to improve hurricane evacuations and fuel supply

Macron backs Merkel in German row over migrants

TIME AND SPACE
China's Beidou system helps livestock water supply in remote pastoral areas

UK says shut out of EU's Galileo sat-nav contracts

Woman drowns in Prague drains playing GPS treasure hunt

What exclusion from Galileo could mean for UK

TIME AND SPACE
Key difference between humans and other mammals is skin deep, says study

Improved ape genome assemblies provide new insights into human evolution

Monkeys eat fats and carbs to keep warm

Bonobos won't eat filthy food, offering clues to the origins of disgust

TIME AND SPACE
Toxic plant that burns skin, causes blindness spreading in US

Sacred snappers: The village where crocodiles are welcome

New technology has bright prospects for understanding plant biodiversity

Sacred snappers: The village where crocodiles are welcome

TIME AND SPACE
Spot a rat? Real-time map aims to plot Paris sightings

US fears of 'mystery weapon' revived by new China diplomat cases

Dialing up the body's defenses against public health threats

Limiting global warming could avoid millions of dengue fever cases

TIME AND SPACE
China pledges $100 million in military aid to Cambodia

Chinese parents-to-be seek more fertile ground abroad

Nepal PM to seek investment on first official China trip

Malaysia power shift hits China infrastructure drive

TIME AND SPACE
Three Mexican soldiers killed in ambush

US targets Chinese fentanyl 'kingpin' with sanctions

Singaporean guilty of sophisticated exam cheating plot

S. Korea deploys warship to Ghana after pirates kidnap sailors

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.