Subscribe free to our newsletters via your
. Medical and Hospital News .




TIME AND SPACE
Exploring the magnetism of a single atom
by Staff Writers
Lausanne, Switzerland (SPX) May 12, 2014


File image.

Magnetic devices like hard drives, magnetic random access memories (MRAMs), molecular magnets, and quantum computers depend on the manipulation of magnetic properties. In an atom, magnetism arises from the spin and orbital momentum of its electrons. 'Magnetic anisotropy' describes how an atom's magnetic properties depend on the orientation of the electrons' orbits relative to the structure of a material.

It also provides directionality and stability to magnetization. Publishing in Science, researchers led by EPFL combine various experimental and computational methods to measure for the first time the energy needed to change the magnetic anisotropy of a single Cobalt atom. Their methodology and findings can impact a range of fields from fundamental studies of single atom and single molecule magnetism to the design of spintronic device architectures.

Magnetism is used widely in technologies from hard drives to magnetic resonance, and even in quantum computer designs. In theory, every atom or molecule has the potential to be magnetic, since this depends on the movement of its electrons.

Electrons move in two ways: Spin, which can loosely be thought as spinning around themselves, and orbit, which refers to an electron's movement around the nucleus of its atom. The spin and orbital motion gives rise to the magnetization, similar to an electric current circulating in a coil and producing a magnetic field. The spinning direction of the electrons therefore defines the direction of the magnetization in a material.

The magnetic properties of a material have a certain 'preference' or 'stubbornness' towards a specific direction. This phenomenon is referred to as 'magnetic anisotropy', and is described as the "directional dependence" of a material's magnetism. Changing this 'preference' requires a certain amount of energy. The total energy corresponding to a material's magnetic anisotropy is a fundamental constraint to the downscaling of magnetic devices like MRAMs, computer hard drives and even quantum computers, which use different electron spin states as distinct information units, or 'qubits'.

The team of Harald Brune at EPFL, working with scientists at the ETH Zurich, Paul Scherrer Institute, and IBM Almaden Research Center, have developed a method to determine the maximum possible magnetic anisotropy for a single Cobalt atom. Cobalt, which is classed as a 'transition metal', is widely used in the fabrication of permanent magnets as well as in magnetic recording materials for data storage applications.

The researchers used a technique called inelastic electron tunneling spectroscopy to probe the quantum spin states of a single cobalt atom bound to an MgO layer. The technique uses an atom-sized scanning tip that allows the passage (or 'tunneling') of electrons to the bound cobalt atom. When electrons tunneled through, they transferred energy the cobalt atom, inducing changes in its spin properties.

The experiments showed the maximum magnetic anisotropy energy of a single atom (~60 millielectron volts) and the longest spin lifetime for a single transition metal atom. This large anisotropy leads to a remarkable magnetic moment, which has been determined with synchrotron-based measurements at the X-Treme beamline at the Swiss Light Source. Though fundamental, these findings open the way for a better understanding of magnetic anisotropy and present a single-atom model system that can be conceivably used as a future 'qubit'.

"Quantum computing uses quantum states of matter, and magnetic properties are such a quantum state", says Harald Brune. "They have a life-time, and you can use the individual suface adsorbed atoms to make qubits. Our system is a model for such a state. It allows us to optimize the quantum properties, and it is easier than previous ones, because we know exactly where the cobalt atom is in relation to the MgO layer."

This work represents a collaboration between EPFL's Laboratory of Nanostructures at Surfaces (LNS), IBM's Almaden Research Center, ETH Zurich's Department of Materials, Paul Scherrer Institute's Swiss Light Source, and Georgetown University's Department of Physics Rau IG, Baumann S, Rusponi S, Donati F, Stepanow S, Gragnaniello L, Dreiser J, Piamonteze C, Nolting F, Gangopadhyay S, Albertini OR, Macfarlane RM, Lutz CP, Jones B, Gambardella P, Heinrich AJ, Harald Brune. 2014. Reaching the magnetic anisotropy limit of a 3d metal atom. Science 08 May 2014.

.


Related Links
Ecole Polytechnique Federale de Lausanne
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Experiment on Earth demonstrates effect observed in space
Rochester NY (SPX) May 01, 2014
Streaming jets of high-speed matter produce some of the most stunning objects seen in space. Astronomers have seen them shooting out of young stars just being formed, X-ray binary stars and even the supermassive black holes at the centers of large galaxies. Theoretical explanations for what causes those beam-like jets have been around for years, but now an experiment by French and American ... read more


TIME AND SPACE
Australia commits up to $84 million to MH370 search

Tech troubles hinder resumption of MH370 search

Hollywood revives Godzilla, Japan's 'king of monsters'

Italy warns EU on asylum as shipwreck survivors land

TIME AND SPACE
Iran to Host Russian Satellite Navigation Facility

Moscow to suspend American GPS sites on Russian territory from June

Next Galileo satellites arrive at Europe's Spaceport

Inmarsat offers global airline tracking service after MH370

TIME AND SPACE
Preschool teacher depression linked to behavioral problems in children

Longevity gene may boost brain power

US military opens door to gender treatment for Manning

Rocks lining Peruvian desert pointed to ancient fairgrounds

TIME AND SPACE
New species of metal-eating plant discovered in the Philippines

Stuck in the middle with oysters and crabs

All in the Rotation

Namibia caught in net of elephant, rhino poaching

TIME AND SPACE
Crimea facing 'human tragedy' on AIDS: UN envoy

China reports first death from H5N6 bird flu strain

Scientists confirm new bird flu in South Pole penguins

China study improves understanding of disease spread

TIME AND SPACE
China detains man in online 'rumour' crackdown

China youth suicides blamed on education system: study

House of Cadres: China cracks down on US TV

Art Basel puts spotlight on Hong Kong

TIME AND SPACE
Chinese worker kidnapped in Malaysia's Borneo island

Vietnam says 7 killed in shooting on China border

Kidnappers demand $11 mln for Chinese tourist

Malaysia kidnappers telephone Chinese victim's family

TIME AND SPACE
China investment slows; shadow banking soars

Japan banks warn of shrinking profits after strong year

Chinese banks lend less in April: central bank

China trade volumes creep up in April: Customs




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.