Medical and Hospital News  
TIME AND SPACE
Extremely short electron pulses enables femtosecond and attosecond level research
by Staff Writers
Konstanz, Germany (SPX) Sep 06, 2018

Electrons (green) reshape into tilted pulses by interference with a beam of laser-generated terahertz radiation (red)

Our world is basically made up of atoms and electrons. They are very small and move around very rapidly in case of processes or reactions. Although seeing atoms is nowadays possible, for example with modern electron microscopes, tracking atomic movements requires ultrashort measurement periods in the femtosecond and attosecond range as well.

Such extremely fast "camera shutter speeds" can be reached through ultrashort electron pulses, which are shorter than the time scale of the motion. The shorter the pulse, the higher the resolution. Equally important for experiments, however, is a special shaping of the electron pulses in space and time, adjusted to the properties of the substance in question.

Konstanz physicist Professor Peter Baum and his team now succeeded in spatially and temporally directing and controlling ultrashort electron pulses directly by using the light cycles of laser light, instead of the previously applied microwaves.

The result is not only a shortened pulse duration, but the researchers were also able to "tilt" the pulses, that is, have them run in another direction than vertically to the pulse front. These findings have been published in the current edition of the scientific journal Physical Review Letters.

Tilted electron pulses provide a huge potential for materials studies in which the fundamental changes last only femtoseconds or attoseconds - periods between 10-15 and 10-18 seconds. These times correspond to the period of atomic oscillations in crystals and molecules, or to the period of an individual light oscillation.

Tilted pulses are also highly relevant for free-electron lasers for producing more intense and shorter X-ray flashes for analyzing ultrafast processes. "Our results show that we can now shape and control electron pulses as eclectically as laser pulses, at the imaging resolution of modern electron microscopy", summarizes Peter Baum.

According to quantum mechanics, the properties of particles at the smallest scale come in pairs, such as position and momentum in the uncertainty principle. And in the case of tilting?

In laser optics it has been known for quite some time that the different colours must run into different directions. In their experiments the researchers from Konstanz and Munich now demonstrated that these old laws of laser optics equally apply to the matter wave of electrons, too, even though the electrons have a rest mass and are not coherent like laser light.

It is probable that these measured relations between pulse tilt and angular dispersion are generally valid for all wave phenomena in physics. In that sense the spatial and temporal shaping of electron pulses that the researchers have now achieved is not only of practical use for ultrafast materials research, but is also fundamentally interesting for physics in general.

Dominik Ehberger, Andrey Ryabov, and Peter Baum. Tilted Electron Pulses. Phys. Rev. Lett. 121, 094801 (2018).


Related Links
University of Konstanz
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Scientists study single molecules with terahertz spectroscopy for the first time
Washington (UPI) Sep 4, 2018
For the first time, scientists have used terahertz spectroscopy to study a single molecule. Spectroscopy is the study of the interactions between light and matter. Most frequently, scientists use infrared light or X-rays to investigate atomic and molecular worlds. Terahertz light lies between infrared and microwaves on the electromagnetic spectrum. Its frequency can excite molecules, causing them to vibrate, but its especially long wavelength makes it near-impossible to be focused onto s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Israelis selling bulletproof backpacks in US after shooting

US firefighters battle suicidal thoughts after the blaze

A year after Irma, Antigua evicts Barbudan storm victims from shelter

Mogherini urges 'practical solutions' to continue migrant mission

TIME AND SPACE
UK plans own satellite system after Galileo exclusion

Space sector to benefit from multi-million pound work on UK alternative to Galileo

US Air Force's first advanced GPS 3 satellite shipped to Cape Canaveral

China launches new twin BeiDou navigation satellites

TIME AND SPACE
Newly-sequenced genome sheds light on interactions between recent hominins

Stone tools reveal modern human-like gripping capabilities 500000 years ago

DNA analysis of 6,500-year-old human remains in Israel points to origin of ancient culture

Oil palm: few areas in Africa reconcile high yields and primate protection

TIME AND SPACE
Sri Lanka probes deaths of wild elephants

The incredible marathon of New Zealand Tawaki penguins

'Molecular hopper' can transport, manipulate single strands of DNA

US judge blocks grizzly bear hunt near Yellowstone Park

TIME AND SPACE
UN emergency talks to head off swine fever spread in Asia

Deadly 'rat fever' in flood-ravaged Indian state

Virus' potency depends on the shape of its DNA

Deadly 'rat fever' in flood-ravaged Indian state

TIME AND SPACE
Malaysian island city in trouble as PM targets China-linked projects

Kenyan police raid state-owned Chinese TV

Hong Kong ushers mainland workers into new station

Chinese police arrest 46 after violent protest over schooling

TIME AND SPACE
New president to inherit a Mexico plagued with grisly violence

Vessel tracking exposes the dark side of trading at sea

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.