Medical and Hospital News  
ENERGY TECH
Fiery sighting: A new physics of eruptions that damage fusion experiments
by Staff Writers
Plainsboro NJ (SPX) Jan 17, 2019

Physicists Ahmed Diallo, front, and Julien Dominski.

Sudden bursts of heat that can damage the inner walls of tokamak fusion experiments are a hurdle that operators of the facilities must overcome. Such bursts, called "edge localized modes (ELMs)," occur in doughnut-shaped tokamak devices that house the hot, charged plasma that is used to replicate on Earth the power that drives the sun and other stars.

Now researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have directly observed a possible and previously unknown process that can trigger damaging ELMs.

Working together, physicists Ahmed Diallo, an experimentalist, and Julien Dominski, a theorist, pieced together data from the DIII-D National Fusion Facility that General Atomics operates for the DOE in San Diego, to uncover a trigger for a particular type of ELM that does not fit into present models of ELM plasma destabilization.

Their findings could shed light on the variety of mechanisms leading to the onset of ELMs and could broaden the portfolio of ELM suppression tools. Understanding ELM physics is crucial to developing fusion facilities that can fuse light elements in the form of plasma - the state of matter composed of free electrons and atomic nuclei - to produce a virtually inexhaustible supply of energy to generate electricity.

Puzzling data
The new observations, reported in Physical Review Letters, began as an effort to unravel puzzling data detected by probes of magnetic field and plasma density fluctuations during DIII-D experiments.

The data showed the eruption of ELMs following periods of unusual quiescence. "These were special cases that didn't follow a standard model," said Diallo. "We started digging into this together," Dominski said. "It was a most interesting collaboration."

In roughly six months of joint research, the physicists uncovered previously unseen correlations of fluctuations in the DIII-D experiments. These correlations revealed the formation of two modes - or waves - at the edge of the plasma that coupled together to generate a third mode. The newcomer then moved toward the wall of the tokamak - created a radial distortion in technical terms - that triggered bursts of low-frequency ELMs.

The ELMs were a type also seen on the Joint European Torus (JET) in the United Kingdom, the ASDEX Upgrade in Germany and other fusion devices following periods of quiescence. In principle, the results could also apply to systems such as solar flares and geomagnetic storms that are suddenly unleashed, according to the paper.

Opening a door
While the findings open a door on a method for triggering ELMs, they do not fully explain the process. The two physicists thus seek to analyze more data sets. "If we can fully understand how the triggering works we can block and reverse it," Diallo said.

Research paper


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Scientists discover a process that stabilizes fusion plasmas
Plainsboro NJ (SPX) Jan 09, 2019
Scientists seeking to bring the fusion reaction that powers the sun and stars to Earth must keep the superhot plasma free from disruptions. Now researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have discovered a process that can help to control the disruptions thought to be most dangerous. Replicating fusion, which releases boundless energy by fusing atomic nuclei in the state of matter known as plasma, could produce clean and virtually limitless power ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
US extends troop deployment at Mexico border

Tech to the rescue: New products aim to improve disaster relief

Global natural disasters wreak $160 bn damage in 2018: Munich Re

Saudi teen's asylum case being judged at lightning speed

ENERGY TECH
Magnetic North's erratic behavior forces update to global navigation system

US Air Force contracts Lockheed Martin to continue GPS ground control supprt

GPS-denied navigation on small unmanned helicopters

China's BeiDou officially goes global

ENERGY TECH
China's population growth slows despite two-child policy

AI-powered genomic analysis reveals unknown human ancestor

Understanding our early human ancestors: Australopithecus sediba

Scientists confirm pair of skeletons are from same early hominin species

ENERGY TECH
Geneticists accidentally engineer mice with especially short, long tails

Butterflies, the unlikely victims of Trump's border wall

Crocodile mauls woman to death in Indonesia

Romeo and Juliet: the last hopes to save Bolivian aquatic frog

ENERGY TECH
Hong Kong scientists claim 'broad-spectrum' antiviral breakthrough

Chinese children given expired polio vaccines in latest scare

Danish malaria vaccine passes test in humans

An ancient strain of plague may have led to the decline of Neolithic Europeans

ENERGY TECH
Ex-diplomats, scholars urge China to release Canadians

Canada asks China for clemency for convicted drug trafficker

Above the concrete canopy: Hong Kong from the sky

Macau denies entry to Hong Kong former activist leader

ENERGY TECH
ENERGY TECH








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.