Medical and Hospital News  
TECH SPACE
First random laser made of paper-based ceramics
by Staff Writers
Munich, Germany (SPX) Nov 14, 2016


The team used conventional laboratory filter paper as a structural template due to its long fibers and the stable structure. Image courtesy Institute for Complex Systems /Rome. For a larger version of this image please go here.

Working with physicists from the University of Rome, a team led by Professor Cordt Zollfrank from the Technical University of Munich (TUM) built the first controllable random laser based on cellulose paper in Straubing. The team thereby showed how naturally occurring structures can be adapted for technical applications. Hence, materials no longer need to be artificially outfitted with disordered structures, utilizing naturally occurring ones instead.

Material synthesis that is inspired by biology is an area of research at TUM's Chair of Biogenic Polymers at the Straubing Center of Science. It utilizes models from nature and biogenic materials to develop new materials and technologies. The latest issue of the publication "Advanced Optical Materials" features a basic study by a joint team from Straubing and Rome who succeeded in "using a biological structure as a template for a technical random laser," according to scientist Dr Daniel Van Opdenbosch.

Two components are necessary for a laser: First of all, a medium which amplifies light. And secondly, a structure which retains the light in the medium. A classic laser uses mirrors to order and shine light in a single direction in a targeted, uniform fashion. This also takes place uniformly in the microscopic structure of a random laser, but in different directions.

Although the development of the random laser is still in its infancy, in the future it could result in lower-cost production. This is because random lasers have the advantage that they are direction-independent and function with multiple colors, just to name a few benefits.

Disordered structure deflects light in all directions
"The prerequisite for a random laser is a defined degree of structural chaos on the interior," Van Opdenbosch explained. The light in a random laser is therefore scattered at all manner of angles along random paths, which are determined by an irregular structure in the interior of the medium. The team led by Professor Zollfrank from the Chair of Biogenic Polymers in Straubing used conventional laboratory filter paper as a structural template. "Due to its long fibers and the resulting stable structure, we deemed it to be suitable for this purpose," said Van Opdenbosch.

In the laboratory, the paper was impregnated with tetraethyl orthotitanate, an organometallic compound. When it is dried and the cellulose burned off at 500 degrees Celsius, it leaves behind the ceramic titanium dioxide as residue - the same substance generally used in sunblock to provide protection from the sun.

"This effect in sunblock is based on titanium dioxide's strong light scattering effect," said Van Opdenbosch, "which we also utilized for our random laser." And "our laser is 'random' because the light which is scattered in different directions due to the biogenic structure of the laboratory filter paper can also be scattered in the opposite direction," he added, explaining the principle.

Random laser not that random after all

However, the light waves can still be controlled despite their random nature, as the team led by Claudio Conti of the Institute for Complex Systems in Rome discovered, with whom Daniel Van Opdenbosch and Cordt Zollfrank collaborated. With the help of a spectrometer, they were able to differentiate the various laser wavelengths generated in the material and localize them separately from one another.

Van Opdenbosch described the procedure: "The test setup used to map the samples consisted of a green laser whose energy could be adjusted, microscope lenses, and a mobile table which allowed the sample to be moved past. That way, our colleagues were able to determine that at different energy levels, different areas of the material radiate different laser waves." In light of this analysis, it is possible to configure the laser in any number of ways and to determine the direction and intensity of its radiation.

This knowledge puts potential practical applications within reach. "Such materials could, for example, be useful as micro-switches or detectors for structural changes," said Van Opdenbosch.

Ghofraniha, Neda, Luca La Volpe, Daniel Van Opdenbosch, Cordt Zollfrank, and Claudio Conti: Biomimetic Random Lasers with Tunable Spatial and Temporal Coherence, Advanced Optical Materials, September 2016. doi:10.1002/adom.201600649.


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Technical University of Munich
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
We gather here today to join lasers and anti-lasers
Berkeley CA (SPX) Nov 09, 2016
Bringing opposing forces together in one place is as challenging as you would imagine it to be, but researchers in the field of optical science have done just that. Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have for the first time created a single device that acts as both a laser and an anti-laser, and they demonstrated these two opposite funct ... read more


TECH SPACE
China jails 49 over giant explosions

Iraqi investigators examine mass grave site near Mosul

Brazil mine gets safety gear -- too late

Haiti aid hard to come by one month after hurricane

TECH SPACE
Swarm reveals why satellites lose track

Satellites to spot drones and guide cyclists

No GPS, no problem: Next-generation navigation

Australia's coordinates out by more than 1.5 metres: scientist

TECH SPACE
Evolution purged many Neanderthal genes from human genome

The fate of Neanderthal genes

Ancient human history more complex than previously thought

Europeans and Africans have different immune systems, and neanderthals are partly to thank

TECH SPACE
Fake crane project brings birds back to Britain

Plant roots in the dark see light

Most illegal ivory from recently killed elephants: study

Study highlights a new threat to bees worldwide

TECH SPACE
Ebola adapted to better infect humans during 2013-2016 epidemic

Not 'patient zero': the origins of US AIDS epidemic

Driving mosquito evolution to fight malaria

Tobacco plants engineered to manufacture high yields of malaria drug

TECH SPACE
Gods, breasts and Britney: China artist opens generation gap

Hong Kong's faith in rule of law shaken by China ruling

Hong Kong backs China bid to bar rebel lawmakers

China passes restrictive new film law

TECH SPACE
African leaders tackle piracy, illegal fishing at Lome summit

US to deport ex-navy chief drug trafficker to Guinea-Bissau

Gunmen ambush Mexican military convoy, kill 5 soldiers

Mexican army to probe killings of six in their home

TECH SPACE
Property and credit booms stablise China growth

China data and US banks propel equities higher

No debt-for-equity cure for zombie firms, says China

China's ranks of super-rich rise despite economic slowdown









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.