Medical and Hospital News  
TIME AND SPACE
Five Things to Know about NASA's Deep Space Atomic Clock
by Staff Writers
Pasadena CA (JPL) Jun 06, 2019

An animated image of the Deep Space Atomic Clock, a new technology being tested by NASA that will change the way humans navigate the solar system. The precise timekeeper is targeted to launch from Florida on June 22, 2019, aboard a SpaceX Falcon Heavy rocket. Credit: NASA/JPL-Caltech

NASA is sending a new technology to space on June 22 that will change the way we navigate our spacecraft - even how we send astronauts to Mars and beyond.

Built by NASA's Jet Propulsion Laboratory in Pasadena, California, the Deep Space Atomic Clock is a technology demonstration that will help spacecraft navigate autonomously through deep space.

No larger than a toaster oven, the instrument will be tested in Earth orbit for one year, with the goal of being ready for future missions to other worlds.

Here are five key facts to know about NASA's Deep Space Atomic Clock:

It works a lot like GPS
The Deep Space Atomic Clock is a sibling of the atomic clocks you interact with every day on your smart phone. Atomic clocks aboard satellites enable your phone's GPS application to get you from point A to point B by calculating where you are on Earth, based on the time it takes the signal to travel from the satellite to your phone.

But spacecraft don't have GPS to help them find their way in deep space; instead, navigation teams rely on atomic clocks on Earth to determine location data. The farther we travel from Earth, the longer this communication takes. The Deep Space Atomic Clock is the first atomic clock designed to fly onboard a spacecraft that goes beyond Earth's orbit, dramatically improving the process.

It will help our spacecraft navigate autonomously
Today, we navigate in deep space by using giant antennas on Earth to send signals to spacecraft, which then send those signals back to Earth. Atomic clocks on Earth measure the time it takes a signal to make this two-way journey. Only then can human navigators on Earth use large antennas to tell the spacecraft where it is and where to go.

If we want humans to explore the solar system, we need a better, faster way for the astronauts aboard a spacecraft to know where they are, ideally without needing to send signals back to Earth. A Deep Space Atomic Clock on a spacecraft would allow it to receive a signal from Earth and determine its location immediately using an onboard navigation system.

It loses only 1 second in 9 million years
Any atomic clock has to be incredibly precise to be used for this kind of navigation: A clock that is off by even a single second could mean the difference between landing on Mars and missing it by miles.

In ground tests, the Deep Space Atomic Clock proved to be up to 50 times more stable than the atomic clocks on GPS satellites. If the mission can prove this stability in space, it will be one of the most precise clocks in the universe.

It keeps accurate time using mercury ions
Your wristwatch and atomic clocks keep time in similar ways: by measuring the vibrations of a quartz crystal. An electrical pulse is sent through the quartz so that it vibrates steadily.

This continuous vibration acts like the pendulum of a grandfather clock, ticking off how much time has passed. But a wristwatch can easily drift off track by seconds to minutes over a given period.

An atomic clock uses atoms to help maintain high precision in its measurements of the quartz vibrations. The length of a second is measured by the frequency of light released by specific atoms, which is same throughout the universe.

But atoms in current clocks can be sensitive to external magnetic fields and temperature changes. The Deep Space Atomic Clock uses mercury ions - fewer than the amount typically found in two cans of tuna fish - that are contained in electromagnetic traps. Using an internal device to control the ions makes them less vulnerable to external forces.

It will launch on a SpaceX Falcon Heavy rocket
The Deep Space Atomic Clock will fly on the Orbital Test Bed satellite, which launches on the SpaceX Falcon Heavy rocket with around two dozen other satellites from government, military and research institutions. The launch is targeted for June 22, 2019, at 8:30 p.m. PDT (11:30 p.m. EDT) from NASA's Kennedy Space Center in Florida and will be live-streamed here: https://www.nasa.gov/live

The Deep Space Atomic Clock is hosted on a spacecraft provided by General Atomics Electromagnetic Systems of Englewood, Colorado. It is sponsored by the Technology Demonstration Missions program within NASA's Space Technology Mission Directorate and the Space Communications and Navigations program within NASA's Human Exploration and Operations Mission Directorate. The project is managed by JPL.

Read more about the Deep Space Atomic Clock here


Related Links
Deep Space Atomic Clock
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
NIST team demonstrates heart of next-generation chip-scale atomic clock
Washington DC (SPX) May 23, 2019
Physicists at the National Institute of Standards and Technology (NIST) and partners have demonstrated an experimental, next-generation atomic clock - ticking at high "optical" frequencies - that is much smaller than usual, made of just three small chips plus supporting electronics and optics. Described in Optica, the chip-scale clock is based on the vibrations, or "ticks," of rubidium atoms confined in a tiny glass container, called a vapor cell, on a chip. Two frequency combs on chips act like g ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Italy, Malta rescue stricken migrants in Mediterranean

Malta navy rescues 75 migrants clinging to tuna pen

Maltese navy rescues more migrants

Military to set up tents for migrants on US-Mexico border

TIME AND SPACE
China's satellite navigation industry scale to exceed 400 billion yuan in 2020

China to launch six to eight BDS-3 satellites this year

China Satellite Navigation Conference opens in Beijing

China launches new BeiDou navigation satellite

TIME AND SPACE
Oldest flaked stone tools point to the repeated invention of stone tools

Six Paths to the Nonsurgical Future of Brain-Machine Interfaces

Chimpanzees catch and eat crabs

Chimpanzees in the wild reduced to 'forest ghettos'

TIME AND SPACE
Adaptations inspired by cultural change common in the animal kingdom

Seabirds feast when penguins herd fish to surface

Fungi communities mostly comprise a few common species

Mammals evolve bigger brains when dads take on parenting duties

TIME AND SPACE
Hong Kong to cull 4,700 pigs after second swine fever case found

Rocky mountain spotted fever risks examined

A Scent-Based Strategy for Preventing Mosquito Transmission of Disease

Pakistan police arrest doctor after 90 infected by HIV syringe

TIME AND SPACE
30 years after Tiananmen, US says hopes dashed as China defends crackdown

Hong Kong remembers Tiananmen, fearful for its own future

Hong Kong's alienated youngsters split over Tiananmen vigil

Silence, US tensions mark Tiananmen 30th anniversary in China

TIME AND SPACE
Amid fentanyl crackdown, Mexico risks 'balloon effect'

Spanish and E.Guinea navy rescue 20 crew from pirate hijacking

Brazil's Bolsonaro eases rules for gun enthusiasts

ICC president urges US to join global criminal court

TIME AND SPACE








The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.